Introduction

Telecommunications Laboratory
by Alex Balatsoukas-Stimming
Technical University of Crete

October 9th, 2008

Outline

(1) Signal Constellations
(2) Choosing a modulation scheme

- Bandwidth Occupancy
- Signal-to-Noise Ratio
- Bandwidth Efficiency and Asymptotic Power Efficiency
(3) Error Probability
- Upper Bounds
- Geometrically Uniform Constellations

Signal Constellations

Signal Constellations and Signal Energy

- We define a finite signal constellation as:

$$
\mathcal{S}=\left\{\mathbf{x}: \mathbf{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{n}, \quad n \in \mathbb{Z}
$$

Each \mathbf{x} is called a signal and has a dimensionality of n .

- $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad\left\{x_{i}\right\}_{i=1}^{n} \in \mathbb{R}$

Information Rate

- For simplicity, let $|\mathcal{S}|=M=2^{m}, \quad m \in \mathbb{Z}^{+}$ Then the maximum information carried by any \mathbf{x} is:

$$
m=\log _{2}|\mathcal{S}|=\log _{2} M \text { bits }
$$

- If the signal rate is $\frac{1}{T}$, where T is the signal duration, then the data rate is:

$$
R_{b}=\frac{m}{T}=\frac{\log _{2} M}{T} \mathrm{bit} / \mathrm{s}
$$

Distance metrics

- Euclidean distance $d_{E}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$:

$$
d_{E}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|=\sqrt{\sum_{i=1}^{n}\left\|x_{i}-x_{i}^{\prime}\right\|^{2}}
$$

- Hamming distance $d_{H}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$:

The number of components in which the two vectors differ.
For example:

$$
\mathbf{x}_{1}=(1,-1,-1,1), \mathbf{x}_{2}=(1,1,-1,-1)
$$

Then:

$$
d_{H}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=2
$$

Choosing a modulation scheme

Bandwidth Occupancy

- The Shannon bandwidth of an N-dimensional signal set is defined as:

$$
W=\frac{N}{2 T} \mathrm{~Hz}
$$

- Shannon bandwidth: the minimum bandwidth that the signal needs.
- Fourier bandwidth: the bandwidth that the signal actually uses.

Signal-to-Noise Ratio (1/2)

- We define the signal energy as the norm:

$$
\|\mathbf{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}
$$

and the average signal energy of a constellation as:

$$
\mathcal{E}=\frac{1}{M} \sum_{\mathbf{x} \in \mathcal{S}}\|\mathbf{x}\|^{2}
$$

- Since each symbol carries (at most) $\log _{2} M$ bits, we can define the average energy per bit as:

$$
\mathcal{E}_{b}=\frac{\mathcal{E}}{\log _{2} M}
$$

Signal-to-Noise Ratio (2/2)

- The average power expended by the modulator is:

$$
\mathcal{P}=\frac{\mathcal{E}}{T}=\mathcal{E}_{b} \frac{\log _{2} M}{T}=\mathcal{E}_{b} R_{b}
$$

- Average noise power is defined as:

$$
\mathcal{P}_{n}=\frac{N_{o}}{2} \cdot 2 W=N_{o} W
$$

where W is the Shannon bandwidth of the signal.

- The Signal-to-Noise ratio (SNR) is the ratio between the average signal power and the average noise power.

$$
\mathrm{SNR} \triangleq \frac{\mathcal{P}}{\mathcal{P}_{n}}=\frac{\mathcal{E}_{b}}{N_{o}} \frac{R_{b}}{W}
$$

Bandwidth Efficiency and Asymptotic Power Efficiency

- The ratio R_{b} / W is called the bandwidth efficiency of a modulation scheme. The higher the ratio, the better the scheme makes use of the available bandwidth W.
- We define the asymptotic power efficiency as:

$$
\gamma \triangleq \frac{d_{E, \min }^{2}}{4 \mathcal{E}_{b}}
$$

- The asymptotic power efficiency (γ) expresses how efficiently a constellation makes use of the available energy to achieve a given minimum Euclidean distance between its points.

Error Probability

Error Probability (1/5)

- In general, the received signal is a distorted version of the transmitted signal. Thus, we introduce the symbol error probability, which is the probability $P(e)$ that the demodulator will make a wrong estimation $(\hat{\mathbf{x}})$ of the transmitted symbol (\mathbf{x}) based on the received symbol, which is defined as follows:

$$
P(e) \triangleq \frac{1}{M} \sum_{\mathbf{x}} \mathbb{P}(\hat{\mathbf{x}} \neq \mathbf{x} \mid \mathbf{x})
$$

- Since one symbol error produces at least one bit error and at most $\log _{2} M$ bit errors, a simple bound for the bit error probability P_{b} (also called Bit Error Rate - BER) is:

$$
\frac{P(e)}{\log _{2} M} \leq P_{b} \leq P(e)
$$

Error Probability (2/5)

- We define the Voronoi (or decision) region for $\mathbf{x} \in \mathcal{S}$ as:

$$
\mathcal{R}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{y}-\mathbf{x}\|=\min _{\mathbf{x}^{\prime} \in \mathcal{S}}\left\|\mathbf{y}-\mathbf{x}^{\prime}\right\|\right\}
$$

- The probability of an erroneous demodulation when \mathbf{x} is transmitted is given by:

$$
\begin{aligned}
P(e \mid \mathbf{x}) & =\mathbb{P}[\mathbf{y} \notin \mathcal{R}(\mathbf{x}) \mid \mathbf{x}] \\
& =1-\mathbb{P}[\mathbf{y} \in \mathcal{R}(\mathbf{x}) \mid \mathbf{x}]
\end{aligned}
$$

- The above expression is generally hard to compute, so it is useful to introduce an upper bound to the error probability.

Error Probability (3/5)

- We define the pairwise error probability $P(\mathbf{x} \rightarrow \hat{\mathbf{x}})$ as the probability that, when \mathbf{x} is transmitted, $\hat{\mathbf{x}}$ is received.
- $P(e \mid \mathbf{x})$ can be expressed as the probability that at least one $\hat{\mathbf{x}} \neq \mathbf{x}$ is closer than \mathbf{x} to \mathbf{y}.
- Using the upper bound to the probability of a union of events, we can write:

$$
P(e \mid \mathbf{x}) \leq \sum_{\hat{\mathbf{x}} \neq \mathbf{x}} P(\mathbf{x} \rightarrow \hat{\mathbf{x}})
$$

- Finally:

$$
P(e)=\frac{1}{M} \sum_{\mathbf{x} \in \mathcal{S}} P(e \mid \mathbf{x}) \leq \frac{1}{M} \sum_{\mathbf{x} \in \mathcal{S}} \sum_{\hat{\mathbf{x}} \neq \mathbf{x}} P(\mathbf{x} \rightarrow \hat{\mathbf{x}})
$$

Error Probability (4/5)

- For the simple case of the AWGN channel:

$$
\mathbf{y}=\mathbf{x}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \frac{N_{o}}{2} I_{n}\right)
$$

- The PEP can be computed in closed form as follows:

$$
\begin{aligned}
P(\mathbf{x} \rightarrow \hat{\mathbf{x}}) & =\mathbb{P}\left(\|\mathbf{y}-\hat{\mathbf{x}}\|^{2}<\|\mathbf{y}-\mathbf{x}\|^{2} \mid \mathbf{x}\right) \\
& =\mathbb{P}\left(\|(\mathbf{x}+\mathbf{z})-\hat{\mathbf{x}}\|^{2}<\|(\mathbf{x}+\mathbf{z})-\mathbf{x}\|^{2}\right) \\
& =\mathbb{P}\left(\|(\mathbf{x}-\hat{\mathbf{x}})+\mathbf{z}\|^{2}<\|\mathbf{z}\|^{2}\right) \\
& =\mathbb{P}\left(\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}+\|\mathbf{z}\|^{2}+2(\mathbf{z}, \mathbf{x}-\hat{\mathbf{x}})<\|\mathbf{z}\|^{2}\right) \\
& =\mathbb{P}\left(\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}<2(\mathbf{z}, \mathbf{x}-\hat{\mathbf{x}})\right) \\
& =\mathbb{P}\left(\|\mathbf{x}-\hat{\mathbf{x}}\|^{2} / 2<(\mathbf{z}, \mathbf{x}-\hat{\mathbf{x}})\right)
\end{aligned}
$$

- $(\mathbf{z}, \mathbf{x}-\hat{\mathbf{x}})$ is a Gaussian RV with mean 0 and variance $N_{o}\|\mathbf{x}-\hat{\mathbf{x}}\|^{2} / 2$.

Error Probability (5/5)

- We know that for a zero mean Gaussian RV it holds that:

$$
P(X>x)=Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{+\infty} e^{-\frac{x^{2}}{2}}
$$

- So, we have:

$$
P(\mathbf{x} \rightarrow \hat{\mathbf{x}})=Q\left(\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}}{2} \cdot \sqrt{\frac{2}{N_{o}\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}}}\right)=Q\left(\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\sqrt{2 N_{o}}}\right)
$$

- Using the Bhattacharyya bound:

$$
Q(x) \leq e^{-x^{2} / 2}, \quad x \geq 0
$$

we can derive the following approximation:

$$
P(\mathbf{x} \rightarrow \hat{\mathbf{x}}) \leq e^{-\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}}{4 N_{o}}}
$$

Geometrically Uniform Constellations (1/2)

- An isometry of \mathbb{R}^{n} is a transformation $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that preserves Euclidean distances:

$$
\|u(\mathbf{x})-u(\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|
$$

- An isometry u that leaves \mathcal{S} invariant, such that

$$
u(\mathcal{S})=\mathcal{S}
$$

is called a symmetry of \mathcal{S}. Obviously, each symmetry is an isometry.

- \mathcal{S} is geometrically uniform if, given any two points $x_{i}, x_{j} \in \mathcal{S}$, there exists a symmetry $u_{i \rightarrow j}\left(x_{i}\right)=x_{j}$

Geometrically Uniform Constellations (2/2)

- All geometric properties of a GU constellation \mathcal{S} relative to some point in it, do not depend on which point is chosen.
- The PEP is generally not independent of the \mathbf{x} under consideration, unless we choose a GU constellation, thus easing the calculation of the error probability bound and the exact error probability.
- So, it holds that:

$$
P(e)=P(e \mid \mathbf{x}) \leq \sum_{\hat{\mathbf{x}} \neq \mathbf{x}} Q\left(\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\sqrt{2 N_{o}}}\right)
$$

