Linear Block Codes

Telecommunications Laboratory
Alex Balatsoukas-Stimming
Technical University of Crete

October 23rd, 2008

Outline

(1) Motivation

(2) Linear Binary Codes

- Hard decision (algebraic) decoding
- Soft decision decoding
- Error Probability
- Systematic Codes
- Error detecting and error correcting capabilities of a code
- Standard array and syndrome decoding.
(3) Hamming codes
- Simulation results

Motivation

- To achieve a given QoS (usually expressed as the bit error rate) using uncoded modulation, we require a certain SNR.
- Bandwidth limited channel
(1) Use higher order constellations, for example 8-PSK instead of 2-PSK.
- Power limited channel
(1) We can add redundancy (keeping symbol energy constant).
(2) The modulator is forced to work at a higher rate to achieve the same information bit rate, increasing bandwidth occupation.
- The difference between the SNR required for the uncoded and the coded system to achieve the same BER is called the coding gain.

Error correcting strategies

- There are two error correcting strategies:
- Forward error correction (FEC)
- Automatic repeat request (ARQ)
(1) Stop-and-wait ARQ (e.g. ABP)
(2) Continuous ARQ (e.g. SRP, Go-Back-N)
- ARQ can only be used if there is a feedback channel.
- When the transmission rate is high, retransmissions happen often, thus introducing delay into the communication.
- For one way channels we can only use FEC.

Linear Binary Codes

Linear Binary Codes

- If \mathcal{C} has the form:

$$
\mathcal{C}=\mathbb{F}_{2}^{k} \mathbf{G}
$$

where \mathbf{G} is a $k \times n$ binary matrix with $n \geq k$ and rank k, called the generator matrix of \mathcal{C}, then \mathcal{C} is called an (n, k, d) linear binary code.

- The code words of a linear code have the form $\mathbf{u G}$ where \mathbf{u} is any binary k-tuple of binary source digits.
- For any $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}$ it can be shown that $\mathbf{c}_{1}+\mathbf{c}_{2} \in \mathcal{C}$, as follows:

$$
\mathbf{c}_{1}+\mathbf{c}_{2}=\mathbf{u}_{1} \mathbf{G}+\mathbf{u}_{2} \mathbf{G}=\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right) \mathbf{G}=\mathbf{u} \mathbf{G} \in \mathcal{C}
$$

- The ratio $r=\frac{k}{n}$ is called the rate of the code.

Linear Binary Codes

- An alternative definition of a linear code is through the concept of an $(n-k) \times n$ parity-check matrix \mathbf{H}. A code \mathcal{C} is linear if:

$$
\mathbf{H c}=\mathbf{0} \quad \forall \mathbf{c} \in \mathcal{C}
$$

- We define $\mathbf{s}=\mathbf{H} \hat{\mathbf{c}}$ as the syndrome of the received binary codeword $\hat{\mathbf{c}}$ which is the received vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ after hard decisions have been made on each of its components.
- If $\mathbf{s} \neq \mathbf{0}$ then we know that an error has occured.

Encoding Example

- Consider the following $k \times n$ generator matrix $(k=3, n=4)$:

$$
\mathbf{G}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

- Each one of the $2^{k}=8$ code words have the form uG
- For example, for $\mathbf{u}_{1}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ we get the codeword:

$$
\mathbf{c}_{1}=\mathbf{u}_{1} \mathbf{G}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right]
$$

Hard decision (algebraic) decoding

- In algebraic decoding, 'hard' decisions are made on each component of the received signal \mathbf{y} forming the vector

$$
\mathbf{x}^{\prime}=\left(\hat{x_{1}}, \hat{x_{2}}, \ldots, \hat{x_{n}}\right)
$$

e.g. for BPSK we have:

$$
\hat{x}_{i}=\operatorname{sign}\left(y_{i}\right)
$$

- If the vector \mathbf{x}^{\prime} is a codeword of \mathcal{C}, then the decoder selects $\hat{\mathbf{x}}=\mathbf{x}^{\prime}$, else the structure of the code is exploited to correct them.
- The method is suboptimal because we discard potentially useful information before using it.

Soft decision decoding

- In soft decision decoding, a Maximum Likelihood (or MAP if codewords are not equally likely) estimation is performed on the whole received vector.

$$
\begin{aligned}
& \hat{\mathbf{x}}=\arg \max _{\mathbf{x} \in \mathcal{C}} p(\mathbf{y} \mid \mathbf{x})(\mathrm{ML}) \\
& \hat{\mathbf{x}}=\arg \max _{\mathbf{x} \in \mathcal{C}} p(\mathbf{x} \mid \mathbf{y})(\mathrm{MAP})
\end{aligned}
$$

- Considerable improvement in performance (usually around 3dB), but more complex implementation.

Hard decision vs. soft decision decoding example (1/2)

- Assume that we have a $(3,1)$ repetition code, that is:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \text { where } x_{2}=x_{3}=x_{1}
$$

- The codewords of this code (in the signal space) are:

$$
\mathbf{c}_{1}=(-1,-1,-1) \text { and } \mathbf{c}_{2}=(+1,+1,+1)
$$

- Assume now that transmitted signal is $\mathbf{x}=(+1,+1,+1)$ and the corresponding received vector is $\mathbf{y}=(+0.8,-0.1,-0.2)$

Hard decision vs. soft decision decoding example (2/2)

- Using hard decision decoding, we decide -1 if the majority of the demodulated signals is -1 , and +1 otherwise.
- The demodulated vector corresponding to the received vector \mathbf{y} is $\hat{\mathbf{y}}=(1,-1,-1)$. Using the majority rule, we decide that $\hat{\mathbf{y}}=\mathbf{c}_{1}=(-1,-1,-1)$, thus making a decoding error.
- Using soft decision decoding, we will choose the codeword with the least Euclidean distance from the received vector:

$$
\begin{aligned}
& d_{E}^{2}\left(\mathbf{y}, \mathbf{c}_{1}\right)=(0.8-1)^{2}+(-0.1-1)^{2}+(-0.2-1)^{2}=2.69 \\
& d_{E}^{2}\left(\mathbf{y}, \mathbf{c}_{2}\right)=(0.8+1)^{2}+(-0.1+1)^{2}+(-0.2+1)^{2}=4.69
\end{aligned}
$$

- So, we correctly choose $\hat{\mathbf{y}}=\mathbf{c}_{1}=(-1,-1,-1)$.

Error Probability (1/2)

- Recall that:

$$
P(e \mid \mathbf{x}) \leq \sum_{\hat{\mathbf{x}} \neq \mathbf{x}} e^{-\|\mathbf{x}-\hat{\mathbf{x}}\|^{2} / 4 N_{o}}
$$

- For the simple case of the binary elemental constellation $\mathcal{X}=\{-x,+x\}$, we have:

$$
\begin{aligned}
d_{E}^{2}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) & =\sum_{i}\left(c_{i}-c_{i}^{\prime}\right)^{2} \\
& =\sum_{c_{i} \neq c_{i}^{\prime}} 4 x^{2} \\
& =4 x^{2} d_{H}\left(\mathbf{c}, \mathbf{c}^{\prime}\right) \\
& =4 \mathcal{E} d_{H}\left(\mathbf{c}, \mathbf{c}^{\prime}\right)
\end{aligned}
$$

Error Probability (2/2)

- Because of the linearity of the code, we have that $\mathbf{c}^{\prime}+\mathbf{c}^{\prime \prime}=\mathbf{c} \in \mathcal{C}$ so, the Hamming distance between \mathbf{c} and $\hat{\mathbf{c}}$ is:

$$
d_{H}(\mathbf{c}, \hat{\mathbf{c}})=w(\mathbf{c}+\hat{\mathbf{c}})=w\left(\mathbf{c}^{\prime}\right)
$$

- So, for the error probability of a single codeword, we have:

$$
P(e \mid \mathbf{c}) \leq \sum_{\hat{\mathbf{c}} \neq \mathbf{c}} e^{-d_{H}(\mathbf{c}, \hat{\mathbf{c}}) \mathcal{E} / N_{o}}=\sum_{\mathbf{c}^{*} \neq \mathbf{0}} e^{-w\left(\mathbf{c}^{*}\right) \mathcal{E} / N_{o}}
$$

- The value of the above summation does not depend on \mathbf{c}, and hence:

$$
P(e \mid \mathbf{c})=P(e)
$$

Systematic Codes

- A linear code is called systematic if its generator matrix has the form

$$
\mathbf{G}=\left[\mathbf{I}_{k} \vdots \mathbf{P}\right]
$$

where \mathbf{P} is a $k \times(n-k)$ matrix.

- The words of these codes have the form

$$
\mathbf{c}=\mathbf{u} \mathbf{G}=[\mathbf{u} \vdots \mathbf{u P}]
$$

- The $(n-k) \times n$ parity check matrix of a systematic code can be constructed as follows

$$
\mathbf{H}=\left[\mathbf{P}^{T} \vdots \mathbf{I}_{n-k}\right]
$$

Systematic Code Example

- We observe that the generator matrix from the previous example can be written in the form

$$
\mathbf{G}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]=\mathbf{G}=\left[\begin{array}{l|l}
\mathbf{I}_{k} & 1 \\
1 \\
1
\end{array}\right]=\left[\mathbf{I}_{k} \vdots \mathbf{P}\right]
$$

where $\mathbf{P}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$, so the code is in its systematic form.

- The parity check matrix \mathbf{H} of the above code can be written as

$$
\mathbf{H}=\left[\mathbf{P}^{T} \vdots \mathbf{I}_{n-k}\right]=\left[\begin{array}{lll:l}
1 & 1 & 1 & 1
\end{array}\right]
$$

Error detecting capabilities of a code

- The received codeword can be written as $\mathbf{r}=\mathbf{c}+\mathbf{e}$, where \mathbf{c} is the transmitted codeword and \mathbf{e} is called the error pattern.
- A code with a minimum distance $d_{\text {min }}$ is capable of detecting all error patterns of $d_{\text {min }}-1$ or less errors.
- For error patterns of $d_{\text {min }}$ or more errors, there exists at least one pattern which transforms the transmitted codeword into another valid codeword, so the code is not capable of detecting all of them.
- It can however detect a large fraction of them. If $\mathbf{e} \in \mathcal{C}$, then (because of the linearity of the code) $\mathbf{r}=\mathbf{c}+\mathbf{e} \in \mathcal{C}$. So, there exist $2^{k}-1$ error patterns of more than $d_{\text {min }}$ errors which are undetectable, leaving a total of $2^{n}-2^{k}+1$ detectable error patterns.

Error correcting capabilities of a code (1/2)

- Let t be a positive integer such that

$$
2 t+1 \leq d_{\min } \leq 2 t+2
$$

- Let \mathbf{c} and \mathbf{r} be the transmitted and the received codeword respectively.
- Let $\mathbf{w} \in\{\mathcal{C}-\{\mathbf{c}, \mathbf{r}\}\}$
- Since the Hamming distance satisfies the triangle inequality, we get

$$
d_{H}(\mathbf{c}, \mathbf{r})+d_{H}(\mathbf{r}, \mathbf{w}) \geq d_{H}(\mathbf{c}, \mathbf{w})
$$

- Since \mathbf{c} and \mathbf{w} are codewords of \mathcal{C}, we have that

$$
d_{H}(\mathbf{c}, \mathbf{w}) \geq d_{\min } \geq 2 t+1
$$

Error correcting capabilities of a code (2/2)

- Suppose that $d_{H}(\mathbf{c}, \mathbf{r})=t^{\prime}$.
- From the above we get that

$$
d_{H}(\mathbf{r}, \mathbf{w}) \geq 2 t+1-t^{\prime}
$$

- If $t^{\prime} \leq t$, then

$$
d_{H}(\mathbf{r}, \mathbf{w})>t
$$

- The above tells us that if an error pattern of t or less errors occurs, the received codeword \mathbf{r} is closer to the transmitted codeword \mathbf{c} than to any other codeword \mathbf{w} in \mathcal{C}

Standard array

- An array containing all 2^{n} binary n-tuples which is constructed as follows:

$$
\begin{array}{cccc}
\mathbf{c}_{1}=\mathbf{0} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{2^{k}} \\
\mathbf{e}_{1} & \mathbf{c}_{2}+\mathbf{e}_{1} & \cdots & \mathbf{c}_{2^{k}}+\mathbf{e}_{1} \\
\mathbf{e}_{2} & \mathbf{c}_{2}+\mathbf{e}_{2} & \cdots & \mathbf{c}_{2^{k}}+\mathbf{e}_{2} \\
\vdots & & & \vdots \\
\mathbf{e}_{2^{n-k}} & \mathbf{c}_{2}+\mathbf{e}_{2^{n-k}} & \cdots & \mathbf{c}_{2^{k}}+\mathbf{e}_{2^{n-k}}
\end{array}
$$

where $\mathbf{c}_{i} \in \mathcal{C}$ and \mathbf{e}_{i} are all 2^{n-k} possible error patterns.

- The first column consists of elements called coset leaders.

Syndrome decoding (1/2)

- Recall that the syndrome of a received vector is defined as:

$$
\mathbf{s}=\mathbf{r} \mathbf{H}^{T}
$$

and that for every codeword $\mathbf{c} \in \mathcal{S}$ it holds that:

$$
\mathbf{s}=\mathbf{c H}^{T}=\mathbf{0}
$$

- All elements of a row of the standard array have the same syndrome:

$$
\left(\mathbf{e}_{1}+\mathbf{c}_{i}\right) \mathbf{H}^{T}=\mathbf{e}_{1} \mathbf{H}^{T}+\mathbf{c}_{i} \mathbf{H}^{T}=\mathbf{e}_{1} \mathbf{H}^{T}
$$

Syndrome decoding (2/2)

- By computing the syndrome of the received codeword, we can estimate which error pattern occured, namely the error pattern which has the same syndrome as the received vector.
- It is optimal to choose the most likely error patterns as the coset leaders.
- In the case of the AWGN with BPSK modulation, the most likely error patterns for large enough SNR are those with minimum weight.
- After estimating the error pattern, we can correct the error as follows:

$$
\hat{\mathbf{c}}=\mathbf{r}+\mathbf{e}_{i}=\left(\mathbf{c}+\mathbf{e}_{i}\right)+\mathbf{e}_{i}=\mathbf{c}
$$

Hamming codes

Hamming codes

- For any positive integer $m \geq 2$, there exists a Hamming code with the following parameters:
(1) Code length: $n=2^{m}-1$
(2) Number of information symbols: $k=2^{m}-m-1$
(3) Number of parity symbols: $m=n-k$
(3) Error correcting capability: $t=1 \quad\left(d_{\text {min }}=3\right)$
- Different code lengths can be chosen to achieve a wide variety of rates and performances.
- The parity check matrix \mathbf{H} of a Hamming code consists of all nonzero m-tuples as its columns.

A Hamming code example

- For example, let $m=3$. We get:
(1) $m=3$ parity symbols
(2) $n=2^{m}-1=2^{3}-1=7$ codeword length
(3) $k=2^{m}-m-1=2^{3}-3-1=4$ information symbols
which is a $(7,4,1)$ linear code.
- The parity check matrix \mathbf{H} of this code is:

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]=\left[\mathbf{I}_{m} \left\lvert\, \begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right.\right]=\left[\mathbf{I}_{m} \vdots \mathbf{P}^{T}\right]
$$

- The generator matrix for this Hamming code can be constructed as follows:

$$
\mathbf{G}=\left[\mathbf{I}_{k} \vdots \mathbf{P}\right]
$$

Simulation results

