
Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellises for Linear Block Codes

DESPOINA GEORGIADOU

Chania 2008

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Outline

1 Introduction
Block Codes and Trellis Representation
The generator matrix G

2 Construction of a bit-level trellis
Trellis Construction With Generator Matrix

3 Trellis Complexity

4 Parallel decomposition

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Block Codes and Trellis Representation

The FSM Model

For every block code we know that:
it has finite memory, that stores input information for a
certain finite time interval
symbols stored in memory and the current input affect the
output code symbols according to a certain encoding rule
at any encoding time symbols stored in memory specify a
state of the encoder at that time instant
since encoder’s memory has finite size, the allowable
states are also finite
when new symbols are shifted in memory, some old are
shifted out of it causing a state transition

So, an encoder can be modeled as a finite-state machine
(FSM).
This dynamic behaviour of a encoder can be graphically
represented by a trellis diagram !

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Block Codes and Trellis Representation

The FSM Model

Let ai be the encoder’s input bit at time-i, uj the output bit at
time-i and gj the rows of the generator matrix, then:

(a0, a1, ..., ak−1)*





g0
g1
.

.

.

gk−1



 = (a0g0 + a1g1 + ... + ak−1gk−1)

=

[a0g00 a0g01 ... a0g0(n−1)]

[a1g10 a1g11 ... a1g1(n−1)]
.

.

.

+[ak−1g(k−1)0 ak−1g(k−1)1 ... ak−1g(k−1)(n−1)]

= [
Pn−1

i=0 ak−1g(k−1)0 ...

Pn−1
i=0 ak−1g(k−1)(n−1)]

= (u0, u1, ..., un−1)

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Block Codes and Trellis Representation

About trellis

Last time we talked about states (or nodes or vertices),
branches and their labels.

Today we define:

Γ = {0,1,2,...,n}: the entire encoding interval (span), is a
sequence of all encoding time instants

state space
∑

i(C) : all allowable states at a given time instant
i

state space dimension at time-i: pi(C) = log2|
∑

i(C)|

state space complexity profile: the sequence
{|

∑

0(C)|, |
∑

1(C)|, ..., |
∑

n(C)|}

state space dimension profile: the sequence (p0, p1, .., pn)

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

Trellis Oriented form of G

A generator matrix G is in Trellis Oriented Form (TOF)
when for each row g ǫ {g0, g1, ..., gk−1}

The leading 1a appears in a column before the leading 1 of
any row below it.

No two rows have their trailing 1b in the same column.

athe first nonzero component of a row
bthe last nonzero component of a row

For GTOGM (trellis oriented generator matrix) we have:

1 digit (or bit) span of g, φ(g) = {i,..,j}, is the smallest index
interval containing all nonzero components of g.

2 time span of g, τ (g)= {i,..,j+1}, same as bit span in terms of
time

3 Active time span, τa(g)= [i+1,j], for j>i.

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

Examples

Every generator matrix can be put in TOF (by elementary
row operations) which is not necessarily systematic form.

Matrix G =
(1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

)

is not in TOF , whereas

GTOGM =
(g0

g1
g2
g3

)

=
(1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

is. The GTOGM matrix is the G

with the second and the fourth rows interchanged and the
fourth row added to all the others.

Bit span an active time span example

φ(g3) = [4,7]

τa(g3) = [5,7]

τ(g3) = [4,8]

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

Partitioning matrix GTOGM of a (n,k) linear code C

At time-i , 0 ≤i≤n we partition the rows of GTOGM into:

1 Gp
i : rows with bit span in the interval [0,i-1]

2 Gf
i : rows with bit span in the interval [i,n-1]

3 Gs
i : rows whose active time spans contain time-i

We can respectively partition information bits a0,a1,...,ak−1

into:
1 Ap

i : bits that don’t affect the encoder output after time-i
2 Af

i : bits that affect the encoder output only after time-i
3 As

i : bits that affect the output both before and after time-i

So As
i is the encoder’s memory (or state) at time-i and |As

i |=pi !

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

Partitioning matrix GTOGM of a (n,k) linear code C - Example

So, for GTOGM =
(g0

g1
g2
g3

)

=
(1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

we have:

Example

Time Gp
i Gf

i Gs
i pi

0 φ g0,g1,g2,g3 φ 0
1 φ g1,g2,g3 g0 1
2 φ g2,g3 g0,g1 2
3 φ g3 g0,g1,g2 3
4 g0 g3 g1,g2 2
5 g0 φ g1,g2,g3 3
6 g0,g2 φ g1,g3 2
7 g0,g1,g2 φ g3 1
8 g0,g1,g2,g3 φ φ 0

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

We also mention that:

g∗ : the row in Gf
i whose leading 1 is at bit position i

its uniqueness is guaranteed, but the existence is not.

a∗ : information bit that corresponds to row g∗ (current input
information bit)

The output code bit generated between time-i and
time-(i+1) is:

ui = a∗ +
∑pi

l=1(a
(i)
l ∗ g(i)

l ,i) a, if g∗ exists

ui =
∑pi

l=1(a
(i)
l ∗ g(i)

l ,i), if g∗ doesn’t exist b

ag(i)
l,i is is the ith component of g(i)

l in Gs
i

bin this case we can put a∗ = 0 (dummy information bit)

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

Output code bit - example

For GTOGM =
(g0

g1
g2
g3

)

=
(1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

we have:

Gs
2 = {g0, g1} and As

2 = {a0, a1} (a0, a2 define the
encoder’s state at time-2)

g∗ = g2 and a∗ = a2 (a2 is the current input)

u2 = a∗ +
∑p2

l=1(a
(2)
l ∗ g(2)

l ,2) = a2 + a0g02 + a1g12 =
a2 + a0 ∗ 1 + a1 ∗ 0 = a2 + a0

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

The generator matrix G

We also mention that:

g0 : the row in Gs
i whose trailing 1 is at bit position i

g0
i is the last nonzero component of g0 (if it exists)

a0 : information bit in As
i that corresponds to row g0 (current

input information bit)

it is the oldest bit information in memory at time-i

At time-(i+1) we have:

Gs
i+1 = (Gs

i \{g0}) ∪ g∗, if g0 exists
As

i+1 = (As
i \{a0}) ∪ a∗, if a0 exists

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis

State labeling
In a code trellis, each state is labeled based on the information
set that defines the state space at a particular encoding time
instant.
The label l(s) of a state s is set to zero except for the
components at the positions corresponding to the information
bits in As

i = {ai
1, ai

2, ..., ai
pi
}.

Thus, the label of the state si is: l(si) = (ai
1, ai

2, ..., ai
pi

).

Labeling Example

If at time i=4 we have As
4 = {a1, a2}, then l(s4)=(0,a1, a2,0).

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis

Now we are ready to construct a trellis diagram:

To construct the bit-level trellis diagram, all we need is:

Gs
i+1

As
i

As
i+1

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis with generator matrix

The construction steps are:
1 Determine Gs

i+1 and As
i+1.

2 Form the state space
∑

i+1(C) at time-(i+1).
3 For each state si ∈

∑

i(C), determine its transition(s)
based on the change from As

i to As
i+1 (bits a0 and a∗).

4 Connect si to its adjucent state(s) in
∑

i+1(C) by branches.
5 For each transition, determine the output code bit ui .
6 Use this ui to label the corresponding branch.

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis

So for GTOGM =
(g0

g1
g2
g3

)

=
(1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

we have:

Example

Time Gs
i a∗ a0 As

i State Label
0 φ a0 - φ (0000)
1 g0 a1 - a0 (a0000)
2 g0,g1 a2 - a0,a1 (a0a100)
3 g0,g1,g2 - a0 a0,a1,a2 (a0a1a20)
4 g1,g2 a3 - a1,a2 (0a1a20)
5 g1,g2,g3 - a2 a1,a2,a3 (0a1a3a3)
6 g1,g3 - a1 a1,a3 (0a10a3)
7 g3 - a3 a3 (000a3)
8 φ - - φ (0000)

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis with generator matrix

Computing all ui for labeling the branches, we come to the end!

So, the trellis we obtain is:

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Trellis Complexity

A trellis’ complexity is:

the branch complexity: the number of branches

the state complexity: the maximum state space dimension
pmax (C)

A minimal trellis
The trellis T is said to be minimal if for any other n-section trellis
T ′ for C with state space dimension profile (p′

0, p′

1, p′

2, ..., p′

n) the
following inequality holds: pi ≤ p′

i , for 0 ≤ i ≤ n .
The minimal trellis has the minimal total number of states and is
also a minimal branch trellis (with smallest branch complexity).

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Parallel Decomposition For Minimal Trellis

Why?

A minimal code trellis is generally densely connected. So there
is a difficulty in implementation.

To address that problem, we can decompose the trellis into
parallel and structurally identical subtrellises of smaller
dimensions without cross-connections between them.

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Decomposition of minimal trellis into minimal parallel sub trellises

We define the following index set:
Imax(C)={i:pi(C) = pmax (C), for 06 i 6 n}

Theorem
If there exists a row g in the GTOGM for an (n,k) linear code C
such that τa(g) ⊇ Imax (C), then the subcode C1 of C generated
by GTOGM�{g} has a minimal trellis T1 with the maximum state
space dimension pmax(C1) = pmax(C) − 1, and
Imax(C1) = Imax(C) ∪ {i : pi(C) = pi(max) − 1, i not in τa(g)}.

If G is in TOF, G1 = G\{g} is also in TOF. If theorem holds, then
we can decompose C into two parallel and structurally identical
subtrellises, one for C1 and the other for the coset C1 ⊕ g.

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Parallel Decomposition-Example

example

For GTOGM =
(g0

g1
g2
g3

)

=
(1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

we have: Imax (C)=[3,5]

as state space dimension is (0,1,2,3,2,3,2,1,0) and pmax(C)=3.
The only row whose active time span τa contains Imax (C) is g1

where τa(g1)=[2,6].

So, G1 =
(

1 1 1 1 0 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1

)

Introduction Construction of a bit-level trellis Trellis Complexity Parallel decomposition

Parallel Decomposition-Example

Constructing the trellis for both C1 and g1 ⊕ C1 we get the
following parallel decomposition:

0

00

0 0
0

0

0

00 00

0

0

0

0

0

0

0 0

0

0 0

0

1

1

1
1 1

1

1

11

11

1

1

1
1

1

1

1
1

1 1

	Introduction
	Block Codes and Trellis Representation
	The generator matrix G

	Construction of a bit-level trellis
	Trellis Construction With Generator Matrix

	Trellis Complexity
	Parallel decomposition

