Construction of a bit-level trellis

Trellis Complexity

Parallel decomposition

Trellises for Linear Block Codes

DESPOINA GEORGIADOU

Chania 2008

Introduction 000000000	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
Outline			

- Block Codes and Trellis Representation
- The generator matrix G

2 Construction of a bit-level trellis

Trellis Construction With Generator Matrix

3 Trellis Complexity

Parallel decomposition

Introduction ●ooooooooo	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
Block Codes and Trellis R	epresentation		
The FSM Mod	lel		

For every block code we know that:

- it has finite memory, that stores input information for a certain finite time interval
- symbols stored in memory and the current input affect the output code symbols according to a certain encoding rule
- at any encoding time symbols stored in memory specify a state of the encoder at that time instant
- since encoder's memory has finite size, the allowable states are also finite
- when new symbols are shifted in memory, some old are shifted out of it causing a state transition

So, an encoder can be modeled as a finite-state machine (FSM).

This dynamic behaviour of a encoder can be graphically represented by a trellis diagram !

Let a_i be the encoder's input bit at time-i, u_j the output bit at time-i and g_j the rows of the generator matrix, then:

 (α_{α})

$$(a_{0}, a_{1}, ..., a_{k-1})^{*} \begin{pmatrix} g_{0} \\ \vdots \\ g_{k-1} \end{pmatrix}^{*} = (a_{0}g_{0} + a_{1}g_{1} + ... + a_{k-1}g_{k-1}) = \begin{bmatrix} a_{0}g_{00} & a_{0}g_{01} & ... & a_{0}g_{0(n-1)} \end{bmatrix} \\ \begin{bmatrix} a_{0}g_{00} & a_{0}g_{01} & ... & a_{1}g_{1(n-1)} \end{bmatrix} \\ \vdots \\ \vdots \\ + \begin{bmatrix} a_{k-1}g_{(k-1)0} & a_{k-1}g_{(k-1)1} & ... & a_{k-1}g_{(k-1)(n-1)} \end{bmatrix} \\ = \begin{bmatrix} \sum_{i=0}^{n-1} a_{k-1}g_{(k-1)0} & ... & \sum_{i=0}^{n-1} a_{k-1}g_{(k-1)(n-1)} \end{bmatrix} \\ = (u_{0}, u_{1}, ..., u_{n-1})$$

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
Block Codes and Trellis R	epresentation		
About trellis			

Last time we talked about states (or nodes or vertices), branches and their labels.

Today we define:

$$\label{eq:response} \begin{split} & \Gamma = \{\mathbf{0},\mathbf{1},\mathbf{2},...,\mathbf{n}\}: \text{ the entire encoding interval (span), is a sequence of all encoding time instants} \\ & \text{state space } \sum_i(C): \text{ all allowable states at a given time instant} \\ & \text{state space dimension at time-i: } p_i(C) = log_2 |\sum_i(C)| \\ & \text{state space complexity profile: the sequence} \\ & \{|\sum_0(C)|, |\sum_1(C)|, ..., |\sum_n(C)|\} \\ & \text{state space dimension profile: the sequence } (p_0, p_1, ..., p_n) \end{split}$$

Trellis Oriented form of G							
The generator matrix G							
Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition				

A generator matrix G is in Trellis Oriented Form (TOF) when for each row g $\epsilon \{g_0, g_1, ..., g_{k-1}\}$

- The leading 1^a appears in a column before the leading 1 of any row below it.
- No two rows have their trailing 1^b in the same column.

^athe first nonzero component of a row ^bthe last nonzero component of a row

For G_{TOGM} (trellis oriented generator matrix) we have:

- digit (or bit) span of g, $\phi(g) = \{i,..,j\}$, is the smallest index interval containing all nonzero components of g.
- time span of g, τ(g)= {i,..,j+1}, same as bit span in terms of time
- Solution Active time span, $\tau_a(g) = [i+1,j]$, for j>i.

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
The generator matrix G			
Examples			

Every generator matrix can be put in TOF (by elementary row operations) which is not necessarily systematic form.

Matrix
$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \end{pmatrix}$$
 is. The G_{TOGM} matrix is the G with the second and the fourth rows interchanged and the fourth row added to all the others.

Bit span an active time span example

•
$$\phi(g_3) = [4,7]$$

•
$$\tau_a(g_3) = [5,7]$$

•
$$\tau(g_3) = [4,8]$$

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
000000000			

The generator matrix G

Partitioning matrix G_{TOGM} of a (n,k) linear code C

At time-i , $0 \le i \le n$ we partition the rows of G_{TOGM} into:

- G_i^p : rows with bit span in the interval [0,i-1]
- **2** G_i^f : rows with bit span in the interval [i,n-1]
- **O** G_i^s : rows whose active time spans contain time-i

We can respectively partition information bits $a_0, a_1, ..., a_{k-1}$ into:

- A_i^{p} : bits that don't affect the encoder output after time-i
- 2 A_i^f : bits that affect the encoder output only after time-i
- Solution A_i^s : bits that affect the output both before and after time-i
- **So** A_i^s is the encoder's memory (or state) at time-i and $|A_i^s| = p_i$!

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
0000000000			

The generator matrix G

Partitioning matrix G_{TOGM} of a (n,k) linear code C - Example

So, for
$$G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
 we have:

Example

Time	$G_i^{ ho}$	G_i^f	G_i^s	p _i
0	ϕ	g_0, g_1, g_2, g_3	ϕ	0
1	ϕ	<i>g</i> ₁ , <i>g</i> ₂ , <i>g</i> ₃	g_0	1
2	ϕ	<i>g</i> ₂ , <i>g</i> ₃	g_0, g_1	2
3	ϕ	g_3	<i>g</i> ₀ , <i>g</i> ₁ , <i>g</i> ₂	3
4	g_0	g 3	g_1, g_2	2
5	g_0	ϕ	g ₁ , g ₂ , g ₃	3
6	g_{0}, g_{2}	ϕ	g ₁ , g ₃	2
7	g_0, g_1, g_2	ϕ	g_3	1
8	g_0, g_1, g_2, g_3	ϕ	ϕ	0

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
The generator matrix G			

We also mention that:

- g^* : the row in G_i^f whose leading 1 is at bit position i
 - its uniqueness is guaranteed, but the existence is not.

 a^* : information bit that corresponds to row g^* (current input information bit)

The output code bit generated between time-i and time-(i+1) is:

$$u_i = a^* + \sum_{l=1}^{p_i} (a_l^{(i)} * g_{l,i}^{(i)})^a$$
, if g^* exists
 $u_i = \sum_{l=1}^{p_i} (a_l^{(i)} * g_{l,i}^{(i)})$, if g^* doesn't exist ^b

 ${}^{a}g_{l,i}^{(i)}$ is is the ith component of $g_{l}^{(i)}$ in G_{i}^{s} ^b in this case we can put $a^{*} = 0$ (dummy information bit)

Introduction 000000000	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
The generator matrix G			

Output code bit - example

For
$$G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$
 we have:

• $G_2^s = \{g_0, g_1\}$ and $A_2^s = \{a_0, a_1\}$ (a_0, a_2 define the encoder's state at time-2)

•
$$g^* = g_2$$
 and $a^* = a_2$ (a_2 is the current input)

•
$$u_2 = a^* + \sum_{l=1}^{p_2} (a_l^{(2)} * g_{l,2}^{(2)}) = a_2 + a_0 g_{02} + a_1 g_{12} = a_2 + a_0 * 1 + a_1 * 0 = a_2 + a_0$$

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
00000000			
The generator matrix G			

We also mention that:

 g^0 : the row in G_i^s whose trailing 1 is at bit position i

- g_i^0 is the last nonzero component of g^0 (if it exists)
- a^0 : information bit in A^s_i that corresponds to row g^0 (current input information bit)
 - it is the oldest bit information in memory at time-i

At time-(i+1) we have:

$$G_{i+1}^{s} = (G_{i}^{s} \setminus \{g^{0}\}) \cup g^{*}$$
, if g^{0} exists $A_{i+1}^{s} = (A_{i}^{s} \setminus \{a^{0}\}) \cup a^{*}$, if a^{0} exists

Construction	of a bit-level trellis					
Trellis Construction With Generator Matrix						
Introduction 000000000	Construction of a bit-level trellis ●0000	Trellis Complexity	Parallel decomposition			

State labeling

In a code trellis, each state is labeled based on the information set that defines the state space at a particular encoding time instant.

The label I(s) of a state s is set to zero except for the components at the positions corresponding to the information bits in $A_i^s = \{a_1^i, a_2^i, ..., a_{p_i}^i\}$.

Thus, the label of the state s_i is: $I(s_i) = (a_1^i, a_2^i, ..., a_{p_i}^i)$.

Labeling Example

If at time i=4 we have $A_4^s = \{a_1, a_2\}$, then $I(s_4)=(0, a_1, a_2, 0)$.

Construction of a bit-level trellis							
Trellis Construction With Generator Matrix							
Introduction 000000000	Construction of a bit-level trellis ○●○○○	Trellis Complexity	Parallel decomposition				

Now we are ready to construct a trellis diagram:

To construct the bit-level trellis diagram, all we need is:

Construction of a bit-level trellis

Trellis Complexity

Parallel decomposition

Trellis Construction With Generator Matrix

Construction of a bit-level trellis with generator matrix

The construction steps are:

- Determine G_{i+1}^s and A_{i+1}^s .
- **2** Form the state space $\sum_{i+1} (C)$ at time-(i+1).
- Solution For each state $s_i \in \sum_i (C)$, determine its transition(s) based on the change from A_i^s to A_{i+1}^s (bits a^0 and a^*).
- Onnect s_i to its adjucent state(s) in $\sum_{i+1}(C)$ by branches.
- For each transition, determine the output code bit u_i.
- **(**) Use this u_i to label the corresponding branch.

Introduction	Construction of a bit-level trellis	Trellis Complexity	Parallel decomposition
Trellis Construction With G	enerator Matrix		

Construction of a bit-level trellis

So for
$$G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
 we have:

Example

Time	G_i^s	a^*	a^0	A_i^s	State Label
0	ϕ	a_0	-	ϕ	(0000)
1	g_0	a_1	-	a_0	(<i>a</i> ₀ 000)
2	g_{0},g_{1}	a_2	-	<i>a</i> ₀ , <i>a</i> ₁	(<i>a</i> ₀ <i>a</i> ₁ 00)
3	<i>g</i> ₀ , <i>g</i> ₁ , <i>g</i> ₂	-	a_0	a_0, a_1, a_2	$(a_0a_1a_20)$
4	g_1, g_2	a_3	-	<i>a</i> ₁ , <i>a</i> ₂	(0 <i>a</i> ₁ <i>a</i> ₂ 0)
5	<i>g</i> ₁ , <i>g</i> ₂ , <i>g</i> ₃	-	a_2	a 1, a 2, a 3	(0 <i>a</i> 1 <i>a</i> 3 <i>a</i> 3)
6	g ₁ , g ₃	-	a_1	a 1, a 3	(0 <i>a</i> 10 <i>a</i> 3)
7	g_3	-	a_3	a_3	(000 <i>a</i> ₃)
8	ϕ	-	-	ϕ	(0000)

Construction of a bit-level trellis with generator matrix

Computing all u_i for labeling the branches, we come to the end!

Trellis Complexity

A trellis' complexity is:

the branch complexity: the number of branches

the state complexity: the maximum state space dimension $p_{max}(C)$

A minimal trellis

The trellis T is said to be minimal if for any other n-section trellis T' for C with state space dimension profile $(p'_0, p'_1, p'_2, ..., p'_n)$ the following inequality holds: $p_i \le p'_i$, for $0 \le i \le n$. The minimal trellis has the minimal total number of states and is also a minimal branch trellis (with smallest branch complexity). Construction of a bit-level trellis

Trellis Complexity

Parallel decomposition

Parallel Decomposition For Minimal Trellis

Why?

A minimal code trellis is generally densely connected. So there is a difficulty in implementation.

To address that problem, we can decompose the trellis into parallel and structurally identical subtrellises of smaller dimensions without cross-connections between them.

Decomposition of minimal trellis into minimal parallel subtrellises

We define the following index set: $I_{max(C)}$ ={i: $p_i(C) = p_{max}(C)$, for $0 \le i \le n$ }

Theorem

If there exists a row g in the G_{TOGM} for an (n,k) linear code C such that $\tau_a(g) \supseteq I_{max}(C)$, then the subcode C_1 of C generated by $G_{TOGM} \setminus \{g\}$ has a minimal trellis T_1 with the maximum state space dimension $p_{max}(C_1) = p_{max}(C) - 1$, and $I_{max(C_1)} = I_{max(C)} \cup \{i : p_i(C) = p_i(max) - 1, i \text{ not in } \tau_a(g)\}.$

If G is in TOF, $G_1 = G \setminus \{g\}$ is also in TOF. If theorem holds, then we can decompose C into two parallel and structurally identical subtrellises, one for C_1 and the other for the coset $C_1 \oplus g$.

Construction of a bit-level trellis

Trellis Complexity

Parallel decomposition

Parallel Decomposition-Example

example

For
$$G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
 we have: $I_{max}(C) = [3,5]$
as state space dimension is $(0,1,2,3,2,3,2,1,0)$ and $p_{max}(C) = 3$.
The only row whose active time span τ_a contains $I_{max}(C)$ is g_1
where $\tau_a(g_1) = [2,6]$.
So, $G_1 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

Construction of a bit-level trellis

Trellis Complexity

Parallel decomposition

Parallel Decomposition-Example

Constructing the trellis for both C_1 and $g_1 \oplus C_1$ we get the following parallel decomposition:

