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Block Codes and Trellis Representation

The FSM Model

For every block code we know that:
@ it has finite memory, that stores input information for a
certain finite time interval
@ symbols stored in memory and the current input affect the
output code symbols according to a certain encoding rule
@ at any encoding time symbols stored in memory specify a
state of the encoder at that time instant
@ since encoder’'s memory has finite size, the allowable
states are also finite
@ when new symbols are shifted in memory, some old are
shifted out of it causing a state transition
So, an encoder can be modeled as a finite-state machine
(FSM).
This dynamic behaviour of a encoder can be graphically
represented by a trellis diagram !



Introduction
(o] le}

Block Codes and Trellis Representation

The FSM Model

Let a; be the encoder’s input bit at time-i, u; the output bit at
time-i and g; the rows of the generator matrix, then:

90
91
(ag,as, ., ak—1)*| = (ap%o + @101 + ... +ak_10k—1)
Ok—1
[20900 ador - @0Yo(n—1)]
[a1010 a1 - a101(n-1)]

+[ak—l.g(k71)0 ax_19(k—1)1 - A&k —19(k—1)(n—1)
= [ Ak 10k—1)0 - g Ak—19k—1)(n—1)]

= (u07 ug,..., Un—l)
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Block Codes and Trellis Representation

About trellis

Last time we talked about states (or nodes or vertices),
branches and their labels.

Today we define:

={0,1,2,...,n}: the entire encoding interval (span), is a
sequence of all encoding time instants

state space ) ;(C) : all allowable states at a given time instant
[

state space dimension at time-i:  p;(C) = logz| > ;(C)|
state space complexity profile:  the sequence

U1220(C) 1224 (C)s s [ 220(C)1}

state space dimension profile:  the sequence (po, p1, --, Pn)
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The generator matrix G

Trellis Oriented form of G

A generator matrix G isin
when for eachrow g € {go,91,...,0k_1}

@ The leading 1% appears in a column before the leading 1 of
any row below it.

@ No two rows have their trailing 1° in the same column.

athe first nonzero component of a row
Pthe last nonzero component of a row

-

For Grogwm (trellis oriented generator matrix) we have:

@ digit (or bit) span of g, ¢(g) = {i,..,j}, is the smallest index
interval containing all nonzero components of g.

@ time span of g, 7(g)= {i,..,j+1}, same as bit span in terms of
time
© Active time span, 75(g)= [i+1,j], for j>i.
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The generator matrix G

Examples

Every generator matrix can be put in TOF (by elementary
row operations) which is not necessarily systematic form.

1
}) is not in TOF , whereas
1

10

11

10

01

Y0
Groem = <8§ > =

93
with the second and the fourth rows interchanged and the
fourth row added to all the others.

® ¢(g3) =[4,7]
® 7a(93) =[5.7]
© 7(g3) =[4.8]

000
92 8> is. The Grogw Matrix is the G
111
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The generator matrix G

Partitioning matrix Grogm Of @ (n,k) linear code C

At time-i, 0 <i<n we partition the rows of Gyggy into:
o Gip : rows with bit span in the interval [0,i-1]
% Gif : rows with bit span in the interval [i,n-1]
© G’ : rows whose active time spans contain time-i

We can respectively partition information bits ag,ay,...,Ak_1

into:

© AP : bits that don't affect the encoder output after time-i

Qo Aif : bits that affect the encoder output only after time-i

© AP : bits that affect the output both before and after time-i
So A} is the encoder's memory (or state) at time-i and |A?|=p; !
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The generator matrix G

Partitioning matrix Grogm Of @ (n,k) linear code C - Example

%o 11110000

- - (01011010 :

So, for Grogm = <g;> = (00110100> we have:
00001111

Time GP G GS pi
0 (] 00,91,92,93 10) 0
1 é 01,92,03 do 1
2 @ 02,03 Jo.01 2
3 @ g3 g0.91.02 3
4 %o g3 01,92 2
5 Jdo é 01,02,9s 3
6 90,92 ¢ 01,03 2
7 00,901,902 (o] 03 1
8 90,91,92,93 ) ] 0
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The generator matrix G

the row in Gif whose leading 1 is at bit position i
@ its uniqueness is guaranteed, but the existence is not.

information bit that corresponds to row g* (current input
information bit)

The output code bit generated between time-i and

time-(i+1) is:
u=a +>n l(aI * 0, I))a if g* exists
u =3P (a" « g |)) if g* doesn't exist P

agl(’ii) is is the ith component of g" in G?
Bin this case we can put a* = 0 (dummy information bit)
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The generator matrix G

Output code bit - example

encoder’s state at time-2)
@ g* =g, and a* = a, (ay is the current input)

2 2
o u, =a*+ Eloil(al( ) g|(72)) = az +aoJ02 + &1912 =
a,+agxl+a;x0=a,+ag
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The generator matrix G

We also mention that:

g : the row in G® whose trailing 1 is at bit position i
) gi0 is the last nonzero component of g (if it exists)

a® : information bit in A} that corresponds to row g° (current
input information bit)

@ it is the oldest bit information in memory at time-i

A\

At time-(i+1) we have:
G?, = (GP\{g°}) U g™, if g° exists
A= (AS\{a%}) U a*, if a° exists

A\
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Trellis Construction With Generator Matrix

Construction of a bit-level trellis

State labeling

In a code trellis, each state is labeled based on the information
set that defines the state space at a particular encoding time
instant.

The label I(s) of a state s is set to zero except for the
components at the positions corresponding to the information
bits in AS = {a},a}, ..., ay }.

Thus, the label of the state s; is: I(s;) = (a}, a), ..., a},).

Labeling Example

If at time i=4 we have A = {ai,ay}, then I(s4)=(0,a1, a,,0).
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Trellis Construction With Generator Matrix

Construction of a bit-level trellis

Now we are ready to construct a trellis diagram:
To construct the bit-level trellis diagram, all we need is:

S
° G,y

oA

S
o A,y
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Trellis Construction With Generator Matrix

Construction of a bit-level trellis with generator matrix

The construction steps are:

O Determine G}, and A? .

© Form the state space >, ,(C) at time-(i+1).

© For each state s; € _;(C), determine its transition(s)

based on the change from A® to A®,, (bits a° and a*).
@ Connect s; to its adjucent state(s) in >, ,(C) by branches.
@ For each transition, determine the output code bit u;.

© Use this u; to label the corresponding branch.
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Trellis Construction With Generator Matrix

Construction of a bit-level trellis

% 11110000
- =(01011010 :
So for Grogm = <g;> = (00110100> we have:
9s 00001111

Time GS a* a° AS State Label
0 10} Qo - 10} (0000)
1 Jo a; - ao (ao000)
2 Jo,01 a; - ag,a1 (apa;100)
3 90,91,92 - ap ap,a1,a (apa1a20)
4 J1,02 as = ap,adz (0a1a20)
5 91,92,93 - az ap,az,as (0a;azaz)
6 01,03 - a; agas (0a;0a3)
7 J3 = as as (00083)
8 10} - - 10} (0000)
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Trellis Construction With Generator Matrix

Construction of a bit-level trellis with generator matrix

Computing all u; for labeling the branches, we come to the end!

So, the trellis we obtain is:




Trellis Complexity

Trellis Complexity

A trellis’ complexity is:

the branch complexity:  the number of branches

the state complexity:  the maximum state space dimension
Pmax (C)

A minimal trellis

The trellis T is said to be minimal if for any other n-section trellis
T’ for C with state space dimension profile (pg, p1, P5, ..., Py) the
following inequality holds: p; < p/,for0 <i <n.

The minimal trellis has the minimal total number of states and is
also a minimal branch trellis (with smallest branch complexity).
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Parallel Decomposition For Minimal Trellis

A minimal code trellis is generally densely connected. So there
is a difficulty in implementation.

To address that problem, we can decompose the trellis into
parallel and structurally identical subtrellises of smaller
dimensions without cross-connections between them.




Parallel decomposition

Decomposition of minimal trellis into minimal parallel sub trellises

We define the following index set:
Imax(c)={i:pi(C) = Pmax(C), for 0< i < n}

Theorem

If there exists a row g in the Grogym for an (n,k) linear code C
such that 73(g) 2 Imax(C), then the subcode C; of C generated
by Groem N\ {09} has a minimal trellis T, with the maximum state
space dimension pmax(C1) = pmax(C) — 1, and

Imax(c,) = Imax(c) U {i : pi(C) = pi(max) — 1,i notin 7a(g)}.

4

If Gisin TOF, G; = G\{g} is also in TOF. If theorem holds, then
we can decompose C into two parallel and structurally identical
subtrellises, one for C; and the other for the coset C; & g.



Parallel decomposition

Parallel Decomposition-Example

example

90 11110000
For Grogm = (g;) = (8 591891 8) we have: Inax(C)=[3,5]

93 \00001111
as state space dimensionis (0,1,2,3,2,3,2,1,0) and pmax(C)=3.
The only row whose active time span 7, contains Imax (C) is g1
where 7,(91)=[2,6].

11110000
So,G1=<oo 0100)
00001111




Parallel decomposition

Parallel Decomposition-Example

Constructing the trellis for both  C; and g, @ C, we get the
following parallel decompaosition:
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