Codes on Graphs

Telecommunications Laboratory

Alex Balatsoukas-Stimming

Technical University of Crete

November 27th, 2008

Outline

(1) Marginalization of a Function

- Factor Graphs
- The Sum-Product Algorithm
(2) Codes on Graphs
- The Iverson Function
- Graph of a Code
- Decoding on a Graph: Using the Sum-Product Algorithm
(3) LDPC Codes
- Desirable Properties
- Construction of LDPC Codes

Symbol MAP decoding

- Assume that we want to minimize the error probability of a single symbol of the code word. In this case, we must do symbol-MAP decoding.
- The rule is:

$$
\hat{x}_{i}=\arg \max _{x_{i}} p\left(x_{i} \mid \mathbf{y}\right)
$$

where

$$
p\left(x_{i} \mid \mathbf{y}\right)=\sum_{\mathbf{x} \in C_{i}\left(x_{i}\right)} p(\mathbf{x} \mid \mathbf{y})
$$

- The above is a marginalization problem.

Marginalization (1/2)

- We associate with a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ its n marginals, defined as follows:

$$
f_{i}\left(x_{i}\right)=\sum_{x_{1}} \ldots \sum_{x_{i-1}} \sum_{x_{i+1}} \ldots \sum_{x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- For each value of x_{i}, these are obtained by summing the function f over all of its arguments consistent with x_{i}.
- A more convenient notation for the above is:

$$
f_{i}\left(x_{i}\right)=\sum_{\sim x_{i}} f\left(x_{1}, \ldots, x_{n}\right)
$$

Marginalization (2/2)

- If $x_{i} \in \mathcal{X}$, then the complexity of the above summation grows as $|\mathcal{X}|^{n-1}$
- If f can be factored as a product of functions, the computation can be simplified.
- For example, consider the function:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=g_{1}\left(x_{1}, x_{2}\right) g_{2}\left(x_{1}, x_{3}\right)
$$

- The marginal $f_{1}\left(x_{1}\right)$ can be computed as:

$$
\begin{aligned}
f_{1}\left(x_{1}\right) & =\sum_{\sim x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{x_{2}} \sum_{x_{3}} g_{1}\left(x_{1}, x_{2}\right) g_{2}\left(x_{1}, x_{3}\right) \\
& =\sum_{x_{2}} g_{1}\left(x_{1}, x_{2}\right) \cdot \sum_{x_{3}} g_{2}\left(x_{1}, x_{3}\right)
\end{aligned}
$$

Factor Graphs ($1 / 2$)

- The above procedure can be graphically represented with a factor graph:

- The nodes are viewed as processors which compute a function whose arguments label the incoming edges.
- The edges are channels by which these processors exchange data.

Factor Graphs (2/2)

- Every factor corresponds to a unique node, and every variable to a unique edge or half edge.
- The factors g_{i} are called local functions or constraints.
- The function f is called the global function.
- Edges connect nodes, half edges connect variables with nodes.
- A cycle of length λ is a path that includes λ edges and closes back on itself. The girth of a graph is the minimum cycle length of the graph.
- In a normal factor graph, no variable appears in more than two factors.

The Sum-Product Algorithm (1/3)

- We will now introduce an algorithm for the efficient computation of the marginals of a function described as a (normal) factor graph.
- This algorithm works when the graph is cycle-free, and yields the marginal function corresponding to each variable associated with an edge.
- The Sum-Product Algorithm is a message passing algorithm, because at each iteration, messages are passed along the edges of the graph.

The Sum-Product Algorithm (2/3)

- Consider the node representing the factor $g\left(x_{1}, \ldots, x_{n}\right)$ of a global function $f\left(x_{1}, \ldots, x_{m}\right)$

- The message passed along the edge corresponding to x_{i} is:

$$
\mu_{g \rightarrow x_{i}}\left(x_{i}\right)=\sum_{\sim x_{i}} g\left(x_{1}, \ldots, x_{n}\right) \prod_{\lambda \neq i} \mu_{x_{\lambda} \rightarrow g}\left(x_{\lambda}\right)
$$

which is the product of g and all messages towards g along all edges except x_{i}, summed over all the variables except x_{i}.

The Sum-Product Algorithm (3/3)

- The messages $\mu_{x_{j} \rightarrow g}\left(x_{j}\right)$ are either the values of x_{j}, if we have a half edge, or the message coming from the node at the other end of the edge.
- The marginal of the global function with respect to x_{i}, is given by the product of all messages exchanged by the SPA over the edge corresponding to x_{i} :

$$
f_{x_{i}}\left(x_{i}\right)=\prod_{j} \mu_{g_{j} \rightarrow x_{i}}\left(x_{i}\right)
$$

The Sum-Product Algorithm (Example)

- Consider a burglar alarm which is sensitive not only to burglary, but also to earthquakes. There are 3 binary variables: a, b, e (for alarm, burglary, and earthquake respectively). A value of 1 indicates that the corresponding event has occured. We want to infer the probability of the two possible causes, given that the the alarm went off:

$$
p(b \mid a=1) \text { and } p(e \mid a=1)
$$

- These can be computed by marginalizing $p(b, e \mid a=1)$
- Asumming that b, e are independent, we have:

$$
(b, e \mid a=1)=\frac{p(a=1 \mid b, e) p(b) p(e)}{p(a=1)} \propto p(a=1 \mid b, e) p(b) p(e)
$$

The Sum-Product Algorithm (Example)

- So, we have factored the function we want to marginalize and the corresponding factor graph is:

where

$$
f_{b}(b) \triangleq p(b) \quad f_{e}(e) \triangleq p(e) \quad f(b, e) \triangleq p(a=1 \mid b, e)
$$

- We are given the following data:

$$
\begin{array}{ll}
f_{b}(0)=0.9 & f_{b}(1)=0.1 \\
f_{e}(0)=0.9 & f_{e}(1)=0.1
\end{array}
$$

and

$$
\begin{array}{ll}
f(0,0)=0.001 & f(1,0)=0.368 \\
f(0,1)=0.135 & f(1,1)=0.607
\end{array}
$$

The Sum-Product Algorithm (Example)

- The messages from nodes f_{b} and f_{e} to node f will be:

$$
\begin{aligned}
& \mu_{f_{b} \rightarrow b}(b)=(0.9,0.1) \\
& \mu_{f_{e} \rightarrow e}(e)=(0.9,0.1)
\end{aligned}
$$

- Once node f has received the above messages, it can compute the messages for nodes f_{b} and f_{e} :

$$
\begin{aligned}
\mu_{f \rightarrow b}(b) & =\underbrace{\sum_{e} f(b, e) \mu_{f_{e} \rightarrow e}(e)}_{b=0} \\
& =(\underbrace{0.001 \times 0.9}_{e=0}+\underbrace{0.135 \times 0.1}_{e=1}
\end{aligned} \underbrace{\underbrace{0.368 \times 0.9}_{e=0}+\underbrace{0.607 \times 0.1}_{e=1})}_{b=1}
$$

The Sum-Product Algorithm (Example)

- Similarly, we can compute $\mu_{f \rightarrow e}(e)=(0.0377,0.1822)$
- The marginals sought can now be written as:

$$
p(b \mid a=1) \propto \mu_{f_{b} \rightarrow b}(b) \cdot \mu_{f \rightarrow b}(b)=(0.01296,0.03919)
$$

and

$$
p(e \mid a=1) \propto \mu_{f_{e} \rightarrow e}(e) \cdot \mu_{f \rightarrow e}(e)=(0.03393,0.01822)
$$

- After scaling of these vectors so the sum of their elements is 1 , we have:

$$
\begin{aligned}
& p(b \mid a=1)=(0.249,0.751) \\
& p(e \mid a=1)=(0.651,0.349)
\end{aligned}
$$

Codes on Graphs

The Iverson Function

- Let P denote a proposition that may be either true or false.
- The Iverson function is defined as:

$$
[P]= \begin{cases}1, & P \text { is true } \\ 0, & P \text { is false }\end{cases}
$$

- If we have n propositions, we have the factorization:

$$
\left[P_{1} \text { and } P_{2} \text { and } \ldots \text { and } P_{n}\right]=\left[P_{1}\right]\left[P_{2}\right] \ldots\left[P_{n}\right]
$$

Graph of a Code (1/4)

- Consider the parity-check matrix:

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

of a ($7,4,3$) Hamming code.

- All codewords satisfy the following parity checks:

$$
\begin{aligned}
& x_{1}+x_{4}+x_{6}+x_{7}=0 \\
& x_{2}+x_{4}+x_{5}+x_{6}=0 \\
& x_{3}+x_{5}+x_{6}+x_{7}=0
\end{aligned}
$$

Graph of a Code (2/4)

- Using the Iverson function, we can express membership of a codeword \mathbf{x} in the code as follows:

$$
[\mathbf{x} \in \mathcal{C}]=\left[\mathbf{H} \mathbf{x}^{T}=\mathbf{0}\right]
$$

- In our case, the above function can be factored as follows:

$$
[\mathbf{x} \in \mathcal{C}]=\left[x_{1}+x_{4}+x_{6}+x_{7}=0\right]\left[x_{2}+x_{4}+x_{5}+x_{6}=0\right]\left[x_{3}+x_{5}+x_{6}+x_{7}=0\right]
$$

- A Tanner graph is a graphical representation of a linear block code corresponding to the set of parity checks that specify the code.
- Each symbol (variable node) is represented by a filled circle (•), and every parity check by a check node (\oplus).

Graph of a Code (3/4)

- Tanner graphs are bipartite, meaning that variable nodes can only be connected to check nodes, and vice versa.
- A Tanner graph may contain cycles, but since they are bipartite, their minimum girth is 4.
- For the Hamming code we defined above, the corresponding Tanner graph will be:

Graph of a Code (4/4)

- Since a given code can be represented by several parity-check matrices, the same code can be represented by several Tanner graphs. Some representations may have cycles while others may be cycle-free.
- Each variable node (\bullet) corresponds to one bit of the codeword, i.e. to one column of \mathbf{H}
- Each check node (\oplus) corresponds to one parity check equation, i.e. to one row of \mathbf{H}
- A connection between variable node j and check node i only exists if $\mathbf{H}_{i j}=1$

Decoding on a Graph: Using the Sum-Product Algorithm

 (1/2)- Consider the symbol-MAP decoding problem stated earlier:

$$
p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})
$$

- For a stationary memoryless channel, we have:

$$
p(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

- Using the Iverson function and assuming that the a priori distribution of codewords is uniform, we can write:

$$
p(\mathbf{x})=[\mathbf{x} \in \mathcal{C}] \frac{1}{|\mathcal{C}|}
$$

Decoding on a Graph: Using the Sum-Product Algorithm

 (2/2)- From the above we get that:

$$
p(\mathbf{x} \mid \mathbf{y}) \propto[\mathbf{x} \in \mathcal{C}] \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

which is in a factored form, so it can be represented by a normal factor graph.

- To compute $p\left(x_{i} \mid y_{i}\right)$ we can marginalize the above function using the sum-product algorithm on the graph.

The Sum-Product Algorithm on Graphs with Cycles

- On a cycle-free graph, the SPA yields the exact APP distribution of the code word symbols in a finite number of steps.
- Codes whose Tanner graphs are cycle-free have a rather poor performance.
- On a graph with cycles, the algorithm may not converge, or it may converge to a wrong result.
- If short cycles are avoided, in most practical cases, the algorithm does converge and yields the correct answer.
- For LDPC codes it is proved that as n grows asymptotically large, the assumption of a graph without cycles holds.

LDPC Codes

Low-Density Parity-Check Codes (1/2)

- LDPC codes are long linear block codes. As the name implies, their parity-check matrix has a low density of non-zero entries.
- Specifically, for a regular LDPC code, \mathbf{H} contains a small number of 1 s in each column, denoted w_{c}, and a small number of 1 s in each row, denoted w_{r}.
- For irregular LDPC codes, the values of w_{c} and w_{r} are not constant.
- Since each column corresponds to one bit of the codeword, w_{c} tells us in how many parity check equations that bit participates.
- Accordingly, since each row corresponds to a parity check equation, w_{r} tells us how many bits participate in each equation.
- If the block length is n, we say that \mathbf{H} characterizes a $\left\langle n, w_{c}, w_{r}\right\rangle$ LDPC code.

Low-Density Parity-Check Codes (2/2)

- If there are m parity check equations, each involving w_{r} bits, and each of the n coded symbols participates in w_{c} equations, it must hold that:

$$
n w_{c}=m w_{r} \Leftrightarrow m=\frac{n w_{c}}{w_{r}}
$$

where m is the number of rows in \mathbf{H}.

- If \mathbf{H} is full rank, then the rate of the code is:

$$
\frac{n-m}{n}=1-\frac{w_{c}}{w_{r}}
$$

which yields the constraint $w_{c} \leq w_{r}$

- The actual rate of the code might be higher than the above, if the parity checks are not independent. We call $\rho^{*} \triangleq 1-w_{c} / w_{r}$ the design rate of the code.

Desirable Properties

- The Tanner graph corresponding to the code should have a large girth, for good convergence properties of the iterative decoding algorithm.
- Regularity of the code eases implementation.
- For good performance at high SNR on the AWGN channel, the minimum Hamming distance must be large. LDPC codes are known to achieve a large value of $d_{H_{\text {min }}}$
- The techniques for the design of parity-check matrices of LDPC codes can be classified under two main categories:
(1) Random constructions.
(2) Algebraic constructions.

Random Constructions (1/2)

- They are based on generating the parity-check matrix randomly filled with 0 s and 1 s , while satisfying some constraints.
- After selecting values for the parameters n, ρ^{*}, w_{c}, we can compute the value of w_{r}.
- For a regular code, row and column weights of \mathbf{H} must be exactly w_{r} and w_{c} respectively.
- Additional constraints can be included, e.g. the number of 1 s in common between any two columns (or rows) should not exceed one, in order to avoid length-4 cycles.

Random Constructions (2/2)

- A method for the random construction of \mathbf{H} was developed by Gallager:
- The parity-check matrix \mathbf{H} of a regular $\left\langle n, w_{c}, w_{r}\right\rangle$ LDPC code has the form:

$$
\mathbf{H}=\left[\begin{array}{c}
\mathbf{H}_{1} \\
\mathbf{H}_{2} \\
\vdots \\
\mathbf{H}_{w_{c}}
\end{array}\right]
$$

- \mathbf{H}_{1} has n columns and n / w_{r} rows, contains a single 1 in each column, and contains 1 s in its i-th row from column $(i-1) w_{r}+1$ to column $i w_{r}$.
- All other matrices are obtained by randomly permuting the columns of \mathbf{H}_{1}.

Random Constructions (Example)

- For example, for $\rho^{*}=1 / 2, w_{c}=2$ and $n=12$, we have:

$$
\rho^{*}=1-\frac{w_{c}}{w_{r}} \Rightarrow w_{r}=4
$$

- Using the method mentioned above, we have:

$$
\mathbf{H}_{1}=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- The column weight of \mathbf{H}_{1} is 1 , the row weight is w_{r} and the matrix is $n / w_{r} \times n$.
- We will need $w_{c}-1=1$ permutation of this matrix to create \mathbf{H}.

Random Constructions (Example)

- One possible permutation is:

$$
\mathbf{H}_{2}=\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- So, the final matrix will be:

$$
\mathbf{H}=\left[\begin{array}{l}
\mathbf{H}_{1} \\
\mathbf{H}_{2}
\end{array}\right]=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
& & & & & & & & & & & \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Algebraic Constructions (1/2)

- Algebraic LDPC codes are more easily decodeable than random codes.
- A simple algebraic construction works as follows: choose $p>\left(w_{c}-1\right)\left(w_{r}-1\right)$ and consider the $p \times p$ matrix obtained from the identity matrix \mathbf{I}_{p} by cyclically shifting its rows by one position to the right:

$$
\mathbf{J}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

- The λ-th power of \mathbf{J} is obtained from \mathbf{I}_{p} by cyclically shifting its rows by $(\lambda \bmod p)$ positions to the right.

Algebraic Constructions (2/2)

- Construct the matrix:

$$
\mathbf{H}=\left[\begin{array}{ccccc}
\mathbf{J}^{0} & \mathbf{J}^{0} & \mathbf{J}^{0} & \ldots & \mathbf{J}^{0} \\
\mathbf{J}^{0} & \mathbf{J}^{1} & \mathbf{J}^{2} & \ldots & \mathbf{J}_{r}-1 \\
\mathbf{J}^{0} & \mathbf{J}^{2} & \mathbf{J}^{4} & \ldots & \mathbf{J}^{2\left(w_{r}-1\right)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{J}^{0} & \mathbf{J}^{w_{c}-1} & \mathbf{J}^{2\left(w_{c}-1\right)} & \ldots & \mathbf{J}^{\left(w_{c}-1\right)\left(w_{r}-1\right)}
\end{array}\right]
$$

where $\mathbf{J}^{\mathbf{0}}=\mathbf{I}_{p}$

- This matrix has $w_{c} p$ rows and $w_{r} p$ columns. The number of 1 s in each row and column is exactly w_{r} and w_{c} respectively.
- It can be proven that no length-4 cycles are present.

