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Regular Codes
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Gallager Codes (1/4)

Original construction used by Gallager in 1963.

To construct a parity-check matrix H with column weight wc and row
weight wr , we first construct a sub-matrix H1 containing a single 1 in
each column and wr 1s in each row.

The i-th row contains 1s in columns (i − 1)wr + 1 to wr .

The other wc − 1 submatrices are random permutations of H1.
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Gallager Codes (2/4)

The final parity-check matrix is obtained by concatenating the wc

submatrices:

H =


H1

H2
...

Hwc


Block length = nwr

Parity symbols = nwc

Design rate = nwr−nwc
nwr

= 1− wc
wr
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Gallager Codes (3/4)

Another way to construct Gallager codes is through superposition of
permutation matrices.

The superposed matrices are generated at random subject to the
constraint that no two non-zero entries coincide.

Figure: Integers denote the number of superposed permutation matrices.

The above constructions create a rate-1
2 parity-check matrix of

column weight 3 and row weight 6.
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Gallager Codes (4/4)

+ Easy construction.

+ Good performance.

- No structure for quick encoding.

- Design rate may not be the actual rate, as H is not guaranteed to
be full rank.

- No guarantee that small cycles are not present.
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Quasi-Cyclic Codes (1/3)

QC-LDPC codes have a parity-check matrix which consists of square
blocks which are either full-rank circulants, or zero matrices.

Circulant matrix used is:

P =



0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
1 0 0 . . . 0


L×L

Powers of the circulant matrix (i.e. right shifts of the identity matrix)
and the zero matrix (denoted P∞) are used to construct H.
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Quasi-Cyclic Codes (2/3)

The mL× nL parity-check matrix is constructed as follows:

H =


Pa11 Pa12 . . . Pa1n

Pa21 Pa22 . . . Pa2n

...
... . . .

...
Pam1 Pam2 . . . Pamn


where aij ∈ {1, 2, . . . , L− 1,∞}
Block size = nL

Parity checks = mL

Design rate = nL−mL
nL = n−m

n

If all blocks are non-zero matrices, the code is regular with row weight
n and column weight m, else, it is irregular.
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Quasi-Cyclic Codes (3/3)

+ Low hardware cost encoding with feedback shift registers with
spatial complexity linearly proportional to mL.

+ Low memory requirement for storing H due to structure.

- Design rate may not be the actual rate, as H is not guaranteed to
be full rank.

- No guarantee that small cycles are not present.
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Array Codes (1/2)

For a prime L = q (P is defined as in QC-LDPC codes) and the
integers j ≤ k ≤ q we create the matrix:

H =


I I . . . I . . . I
I P1 . . . Pj−1 . . . Pk−1

I P2 . . . P2(j−1) . . . P2(k−1)

...
...

...
...

I P(j−1) . . . P(j−1)(j−1) . . . P(j−1)(k−1)


Block length = kq

Parity checks = jq

Design rate = kq−jq
kL = k−j

k
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Array Codes (2/2)

+ For j > 3, no length-4 cycles exist.

+ Design rate equals actual rate, since H is full rank.

- No structure for quick encoding.

- Worse performance than Gallager codes.
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Random Codes (1/2)

For a regular code, nwc = mwr must hold.

We can construct a rate-n−m
n code by following these steps:

Begin with the zero matrix H0

1 At step i, choose a random m × 1 column of weight wc , which is not
already being used in Hi−1 or rejected in previous steps, and add it to
Hi−1.

2 Check whether the added column has more than one 1-component in
common with any column in Hi−1. If not, go to next step. Else reject
the column and go back to step 1.

3 If all rows have weight less than wr , save Hi and continue to next
round. Else, reject the column and go back to step 1.

When n columns have been added, stop and return the finished
matrix Hn.
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Random Codes (2/2)

+ No length-4 cycles exist (due to step 2 of the process).

+ Code ensemble has been proven to have good performance.

- Design rate may not be the actual rate, as H is not guaranteed to
be full rank.

- No structure for quick encoding.

- Construction can become computationally very expensive, especially
for large column weights and code lengths.
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Irregular Codes
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Modified Array Codes (1/2)

For a prime L = q (P is defined as in QC-LDPC codes) and the
integers j ≤ k ≤ q we create the matrix:

H =


I I I . . . I . . . I
0 I P1 . . . Pj−2 . . . Pk−2

0 0 I . . . P2(j−3) . . . P2(k−3)

...
...

...
...

...

0 0 0 . . . I . . . P(j−1)(k−j)


Block length = kq

Parity checks = jq

Design rate = kq−jq
kL = k−j

k
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Modified Array Codes (2/2)

+ For j > 3, no length-4 cycles exist.

+ Design rate equals actual rate, since H is full rank.

+ Structure allows for quick encoding using Richardson and Urbanke’s
method with time complexity linearly proportional to block length.

- Worse performance than Gallager codes.
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Poisson Construction (1/2)

All examples below use the following profile:

λ(x) =
11

12
x2 +

1

12
x8

ρ(x) = x6

The variable nodes connected to 9 check nodes will be called “elite
bits”.

In the Poisson construction, most checks connect to one or two elite
bits, but a fraction of them will connect to more than two, and some
will connect to none.
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Poisson Construction (2/2)

The construction is as follows:

Figure: Horizontal line emphasizes constant row weight.
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Sub-Poisson Construction

This construction allocates exactly one or two elite bits to each check.

The construction is as follows:

Figure: Integers denote the number of superposed permutation matrices.
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Moderately Super-Poisson Construction

In this construction, one third of the checks are connected to one elite
bit, one third are connected to none, one sixth are connected to 3,
and one sixth are connected to 4.

The construction is as follows:

Figure: Integers denote the number of superposed permutation matrices.
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Very Super-Poisson Construction

In this construction, one third of the checks are connected to four
elite bits, one third are connected to one, ad one third are connected
to none.

The construction is as follows:

Figure: Integers denote the number of superposed permutation matrices.
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x-Poisson Constructions

+ Better performance than regular codes even though we have no
guarantee for the absence of small cycles.

+ Decoding in fewer iterations.

- No structure for quick encoding.

- Each decoding round requires more operations, so total decoding
time is about the same as for regular codes.
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Fast Encoding

Some fast encoding constructions based on the above follow:

Figure: Integers denote the number of superposed permutation matrices.
Diagonal line denotes line of 1s.

Due to the approximate upper-triangular form of the matrices, fast
encoding is possible with complexity O(n + g2), where g denotes the
size of the non-triangular part of the matrix.

No significant performance loss.
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