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ABSTRACT

We assess the impact of the channel and carrier frequency
offset (CFO) estimation errors on the performance of single-
carrier systems with MMSE linear equalizers. Performance
degradation is caused by the fact that amismatchedMMSE
linear equalizer is applied to channel output samples with
imperfectly canceledCFO. We develop asymptotic expres-
sions for the excess mean square error (EMSE) induced by
the channel and CFO estimation errors. Under some real-
istic assumptions, we derive a simple EMSE approximation
which reveals that performance degradation is mainly caused
by the imperfectly canceled CFO. Furthermore, the EMSE is
approximately proportional to the CFO estimation error vari-
ance, with the proportionality factor being independent ofthe
training sequence. Thus, optimal training sequence (TS) de-
sign for CFO estimation is also highly relevant forjoint chan-
nel and CFO estimation.

Index Terms— joint channel and CFO estimation, linear
equalization.

1. INTRODUCTION

A problem that frequently arises in packet-based wireless sys-
tems is thejoint estimation of the frequency selective channel
and the CFO [1]. Optimal TS design for this problem has
been considered in [2]. The optimized cost function in [2]
was theasymptoticCramér-Rao bound (CRB). However, the
channel and the CFO estimation errors were assigned equal
weight. This might besuboptimalsince “... presumably chan-
nel estimation errors will have a different impact, e.g., onbit-
error rate, than frequency estimation errors” [2]. It seems
that theunequal weightingproblem cannot be resolved unless
one considers specific receiver structures [3].

In this work, we consider a receiver with an MMSE linear
equalizer. Performance degradation is caused by the fact that
a mismatchedMMSE linear equalizer is applied to channel
output samples withimperfectly canceledCFO. In order to
uncover the relative importance of these error sources, we de-
velop an asymptotic expression for the induced EMSE which,

however, is very complicated. Under asmall ideal MMSEas-
sumption, we derive a simple and informative EMSE approx-
imation which reveals that the most important error source
is the imperfectly canceled CFO. Furthermore, the EMSE is
approximately proportional to the CFO estimation error vari-
ance, with the proportionality factor beingindependentof
the TS. Thus, optimal TS design for CFO estimation is also
highly relevant forjoint channel and CFO estimation. We also
highlight the fact that the placement of the TS at the middle
of the transmitted packet leads to smaller EMSE.

Notation: SuperscriptsT , H and∗ denote transpose, con-
jugate transpose and elementwise conjugation, respectively.
Re{·} denotes the real part of a complex number.PR(A)

andP⊥

R(A) denote the orthogonal projectors onto the column
space of matrixA and onto its orthogonal complement.

2. CHANNEL AND CFO ESTIMATION

2.1. The channel model

We consider the linear baseband-equivalent discrete-time
frequency-selective channel with output

zn =
L∑

l=0

hlan−l + wn (1)

wherean andwn denote the channel input and additive chan-
nel noise, respectively. The input packet has lengthN . The
input symbols are i.i.d. unit variance circular. The noise sam-
ples are i.i.d. circular Gaussian, with varianceσ2

w. The chan-

nel impulse response ish
△
= [h0 · · ·hL]

T . The channel output

vectorzn:n−M
△
= [zn · · · zn−M ]T can be expressed as

zn:n−M = Han:n−M−L +wn:n−M (2)

whereH is the(M + 1) × (M + L + 1) Toeplitz filtering
matrix constructed byh.

If angular CFOω is present, then the channel output is

rn = ejωn

L∑

l=0

hlan−l + wn (3)



and, similarly to (2), we can write

rn:n−M = Γn:n−M (ω)Han:n−L−M +wn:n−M (4)

whereΓn:n−M (ω)
△
= diag(ejωn, . . . , ejω(n−M)).

2.2. Channel and CFO estimation

We assume that theNtr symbolsatr
△
= [an1

· · · an2
]T , with

Ntr
△
= n2−n1+1, are used for training. Collecting the output

samples that dependonlyon the training, we obtain

y
△
= rn2:n1+L = Γn2:n1+L(ω)Ah+wn2:n1+L (5)

whereA is the(Ntr − L)× (L+ 1) Hankel matrix

A
△
=






an2
· · · an2−L

...
. . .

...
an1+L · · · an1




 . (6)

It turns out [4] that the estimate ofh and, thus, its accuracy,
depends onn1, n2 andω̂ throughΓn2:n1+L(ω̂). An accurate
channel estimate1 is obtained if we rewrite (5) as

y = ΓNtr−L

2
−1:−

Ntr−L

2

(ω)Ah′ +wn2:n1+L (7)

whereh′ △
= ejωξh andξ

△
= n1 +

Ntr+L
2 , i.e.,ξ is the middle

position ofy, and instead ofh we estimateh′ (for details see
[4]). The joint ML estimates ofω andh′ are [1]

ω̂ = argmax
ω̃

{yHΓn2:n1+L(ω̃)PR(A)Γ
H
n2:n1+L(ω̃)y} (8)

ĥ′ = (AHA)−1AHΓH
Ntr−L

2
−1:−

Ntr−L

2

(ω̂)y. (9)

If we define∆ω
△
= ω̂ − ω, ∆h′ △

= ĥ′ − h′, and

K′ △
= diag

(Ntr − L

2
− 1, . . . ,−

Ntr − L

2

)

,

then thefinite sampleCRBs [2] imply that

σ2
∆ω

△
= E

(

(∆ω)
2
)

=
1

2
σ2
w

[

tr
(

hHAHK′P⊥

R(A)K
′Ah

)]−1

(10)

C′ △
= E

(

∆h′∆h′H
)

= σ2
w(A

HA)−1

+ σ2
∆ω(A

HA)−1AHK′Ah′h′HAHK′A(AHA)−1

(11)

C′

t

△
= E

(

∆h′∆h′T
)

= −σ2
∆ω(A

HA)−1AHK′Ah′h′T

×ATK′A∗(AHA)−T

(12)

and

E (∆ω∆h′) = jσ2
∆ω(A

HA)−1AHK′Ah′. (13)

We assume that the noise varianceσ2
w is known at the receiver.

1However, we do not claim optimality, in general.

3. THE MISMATCHED MMSE LINEAR EQUALIZER

3.1. The ideal case

The order-M delay-d MMSE linear equalizer is [5]

f =
(

H′H′H + σ2
wIM+1

)−1

H′ed = R−1
z

H′ed (14)

whereH′ is the filtering matrix constructed byh′, Rz

△
=

Ea,w
[
zn:n−MzHn:n−M

]
= H′H′H + σ2

wIM+1 anded is the
(M + L+ 1)× 1 vector with 1 at the(d+ 1)-st position and
zeros elsewhere. The corresponding MMSE is

MMSE = 1− fHRzf . (15)

For later use, we defineR as the(M + 1)× (L + 1) Hankel

matrix constructed byr
△
= c− ed, with c being the combined

(channel-equalizer) impulse response, that is,c
△
= H′T f∗,

andG
△
= H′FT , whereF is the(L + 1) × (L + M + 1)

Toeplitz filtering matrix constructed byf .

3.2. CFO correction and mismatched MMSE equalizer

Adopting the channel model presented in (7), the channel out-
put is expressed as

r′n = ejω(n−ξ)
L∑

l=0

h′

lan−l + wn. (16)

After the computation of̂ω, we proceed to CFO correction

s′n = e−jω̂(n−ξ)r′n. (17)

Then, it can be shown thats′n:n−M can be expressed as

s′n:n−M = ej∆ωξΓn:n−M (−∆ω)H′an:n−L−M

+ ejω̂ξΓn:n−M (−ω̂)wn:n−M .
(18)

If we use in (14) the channel estimatêh′ as if it were the
true channelh′, we compute the mismatched MMSE equal-
izer

f̂ =
(

Ĥ′Ĥ′H + σ2
wIM+1

)−1

Ĥ′ed. (19)

The equalizer mismatch is defined as∆f
△
= f̂ − f . The input

symbol estimation error at the time instantn is

ên = f̂Hs′n:n−M − eHd an:n−L−M (20)

and the mean square estimation error is

MSEn(f̂ , ω̂)
△
= Ea,w

[
| ên|

2
]

= f̂H
(

Γn:n−M (−∆ω)H′H′HΓH
n:n−M (−∆ω)+σ2

wIM+1

)

f̂

− 2Re{ej∆ωξ f̂HΓn:n−M (−∆ω)H′ed}+ 1.

We observe that the mean square estimation error is time-
dependent.



4. EMSE ANALYSIS

The EMSE at the time instantn is defined as

EMSEn(f̂ , ω̂)
△
= E∆h′,∆ω[MSEn(f̂ , ω̂)]−MMSE. (21)

Proposition 1. The EMSE induced by the channel and CFO

estimation errors at time instantn, for n ∈ D
△
= {d +

1, . . . , n1 + d− 1} ∪ {n2 + d+ 1, . . . , N + d},2 can be ap-
proximated as

EMSEn(f̂ , ω̂) ≈ T1 +T2(n) +T3(n) (22)

where

T1
△
= tr

(

R−1
z

(
R∗C′RT +GC′∗GH

+GC′∗

t R
T +R∗C′

tG
H
))

(23a)

T2(n)
△
= σ2

∆ωRe{f
HD′ 2

n:n−MH′ed} (23b)

T3(n)
△
= 2σ2

∆ωRe
{
h′HAHK′A(AHA)−1

×RTR−1
z D′

n:n−MH′ed

− h′TATK′A∗(AHA)−T

×GHR−1
z D′

n:n−MH′ed
}

(23c)

andD′
n:n−M

△
= diag((n− ξ), . . . , (n−M − ξ)).

Proof: The details of the approximation and the proof are
provided in [4]. 2

Term T1 involves only the channel estimation error
second-order statistics. In fact, it is the EMSE that would
result if the mismatched equalizer were applied to perfectly
CFO-corrected channel output samples [5, eq. (28)]. Term
T2(n) involves only the CFO estimation error variance, and
is the EMSE that would result if the ideal MMSE equalizer
were applied to imperfectly corrected data. TermT3(n)
involves both the channel and CFO estimation errors.

4.1. “Small ideal MMSE” assumption

In order to be able to derive insightful EMSE approximations
we assume that theidealMMSE is sufficiently small, i.e., the
equalizer length is sufficiently large, the SNR is sufficiently
high and the delay is chosen carefully. This assumption de-
fines a scenario of high practical importance because it refers
to the cases where the MMSE linear equalizer seems most
suitable. Under this assumption, matrixR becomes “small”
with respect toG (both matrices are defined after (15)).3 Con-
sequently,T1 andT3(n) can be approximated as

T1 ≈ tr
(
R−1

z GC′∗GH
)

(24)

T3(n) ≈ −2σ2
∆ω Re

{
h′TATK′A∗(AHA)−T

×GHR−1
z D′

n:n−MH′ed
}
.

(25)

2We do not compute the EMSE for the training symbolsan, n =

n1, . . . , n2.
3see the discussion before eq. (30) of [5].

4.1.1. Time-average EMSE

Significant insight can be gained if we study the EMSE time-
average, across the time instances that correspond to the un-
known transmitted data, defined as [3]

EMSE(f̂ , ω̂)
△
=

1

n1 − 1

n1+d−1∑

n=d+1

EMSEn(f̂ , ω̂)

+
1

N − n2

N+d∑

n=n2+d+1

EMSEn(f̂ , ω̂)

= T1 +
1

n1 − 1

n1+d−1∑

n=d+1

(T2(n) +T3(n))

+
1

N − n2

N+d∑

n=n2+d+1

(T2(n) +T3(n)) .

If we defineC1
△
= 1

n1−1

∑n1+d−1
n=d+1 n2+ 1

N−n2

∑N+d

n=n2+d+1 n
2

andC2
△
= 1

n1−1

∑n1+d−1
n=d+1 n + 1

N−n2

∑N+d

n=n2+d+1 n, then it
is easy to show that

T2
△
=

1

n1 − 1

n1+d−1∑

n=d+1

T2(n) +
1

N − n2

N+d∑

n=n2+d+1

T2(n)

= σ2
∆ω

[(
C1 − 2 C2ξ + 2ξ2

)
Re{fHH′ed}

︸ ︷︷ ︸

T21

−2(C2 − 2ξ)Re{fHDMH′ed}
︸ ︷︷ ︸

T22

+2Re{fHD2
MH′ed}

︸ ︷︷ ︸

T23

]

and

T3
△
=

1

n1 − 1

n1+d−1∑

n=d+1

T3(n) +
1

N − n2

N+d∑

n=n2+d+1

T3(n)

≈ −2σ2
∆ω Re

{

h′TATK′A∗(AHA)−TGHR−1
z

×
(

(C2 − 2 ξ)
︸ ︷︷ ︸

t31

IM+1 − 2DM

)

H′ed

}

.

BothT2 andT3 depend onξ. It turns out that there doesnot
exist aunique channel independentξ that is optimal, i.e., al-
ways attains minimum EMSE. If we putξ = C2

2 ,4 then term
T21 is minimized5 and termsT22 andt31 vanish. In the se-
quel, we adopt this simple choice (however, we do not claim
optimality, in general). Then, if we define

C
△
=

(

C1 −
C2
2

2

)

(26)

4This implies that the training block is placed close to the middle of the
packet (see the definition ofξ after (7)).

5We shall see thatT21 is the most significant EMSE term.



we obtain

T2 = σ2
∆ω

[
C Re{fHH′ed}+ 2Re{fHD2

MH′ed}
]

(27)

and

T3 ≈ 4 σ2
∆ω Re

{

h′TATK′A∗(AHA)−TGHR−1
z DMH′ed

}

.

(28)
Thus, the EMSE time-average is approximately equal to the
sum of the three terms in (24), (27) and (28).

It can be shown [4] that ifH andA are not very ill-
conditioned andNtr

N
is sufficiently small, thenT2 dominates

both T1 andT3. Thus, the EMSE is approximately equal
to T2 and performance degradation is mainly caused by the
imperfectly canceled CFO. Furthermore, a simplified approx-
imate expression forT2 isT2 ≈ C σ2

∆ω [4]. Thus

EMSE(f̂ , ω̂) ≃ C σ2
∆ω. (29)

That is, the EMSE is approximately proportional to the CFO
estimation error variance, with the proportionality factor be-
ing independentof the training sequence. Thus, training se-
quences that are optimal for CFO estimation, i.e. minimize
σ2
∆w, see, e.g., [6]–[8], seem also very good candidates for

joint channel and CFO estimation.

5. SIMULATION RESULTS

We present simulation results for channel orderL = 3
and channel coefficientsh=[0.001 − j0.0311,−0.0066 +
j0.0825,−0.9451 + j0.3051,−0.0144− j0.0757]T , equal-
izer orderM = 8, delayd = 6, packet lengthN = 300
and TS lengthNtr = 30. The data symbols are i.i.d. BPSK.
The training symbols, which are also i.i.d. BPSK, have been
placed close to the middle of the transmitted packet, i.e.,
ξ = C2

2 . The binary sequence we use corresponds to the
hexadecimal number198153E6 (we have observed, through
exhaustive search, that this sequence has “good” performance
for both CFO and joint channel and CFO estimation).

In Fig. 1, we present the time-averages of the three EMSE
termsT1, T2 andT3 in (24), (27) and (28), respectively, and
their sum, i.e., the approximate EMSE. We observe thatT2 is
very close to the approximate EMSE, while termsT1 andT3

are much smaller.

6. CONCLUSION

We considered the impact of the channel and CFO estima-
tion errors on the performance of single-carrier systems with
MMSE equalizers. We uncovered that, in many cases of high
practical importance, the imperfectly canceled CFO is the
main cause of the performance degradation. In these cases,
the EMSE is approximately proportional to the CFO estima-
tion error variance, with the proportionality coefficient be-
ing independent of the TS, implying that optimal TS design
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Fig. 1. Final expressions for termsT1, T2 andT3 in (24),
(27) and (28) and their sum.

for CFO estimation is also highly relevant forjoint CFO and
channel estimation.
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