Trellises for Linear Block Codes

DESPOINA GEORGIADOU

Chania 2008
Outline

1 Introduction
 • Block Codes and Trellis Representation
 • The generator matrix G

2 Construction of a bit-level trellis
 • Trellis Construction With Generator Matrix

3 Trellis Complexity

4 Parallel decomposition
The FSM Model

For every block code we know that:

- it has finite memory, that stores input information for a certain finite time interval
- symbols stored in memory and the current input affect the output code symbols according to a certain encoding rule
- at any encoding time symbols stored in memory specify a state of the encoder at that time instant
- since encoder’s memory has finite size, the allowable states are also finite
- when new symbols are shifted in memory, some old are shifted out of it causing a state transition

So, an encoder can be modeled as a finite-state machine (FSM).
This dynamic behaviour of a encoder can be graphically represented by a trellis diagram!
Let \(a_i \) be the encoder's input bit at time-\(i \), \(u_j \) the output bit at time-\(i \) and \(g_j \) the rows of the generator matrix, then:

\[
(a_0, a_1, \ldots, a_{k-1})^* \begin{pmatrix}
g_0 \\
g_1 \\
\vdots \\
g_{k-1}
\end{pmatrix} = (a_0 g_0 + a_1 g_1 + \ldots + a_{k-1} g_{k-1})
\]

\[
= \begin{bmatrix}
a_0 g_{00} & a_0 g_{01} & \ldots & a_0 g_{0(n-1)} \\
a_1 g_{10} & a_1 g_{11} & \ldots & a_1 g_{1(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k-1} g_{(k-1)0} & a_{k-1} g_{(k-1)1} & \ldots & a_{k-1} g_{(k-1)(n-1)}
\end{bmatrix}
\]

\[
= \sum_{i=0}^{n-1} a_{k-1} g_{(k-1)i} + \sum_{i=0}^{n-1} a_{k-1} g_{(k-1)(n-1)}
\]

\[
= (u_0, u_1, \ldots, u_{n-1})
\]
About trellis

Last time we talked about states (or nodes or vertices), branches and their labels.

Today we define:

\[\Gamma = \{0, 1, 2, \ldots, n\} \]: the entire encoding interval (span), is a sequence of all encoding time instants

state space \(\sum_i(C) \): all allowable states at a given time instant \(i \)

state space dimension at time-\(i \): \(p_i(C) = \log_2|\sum_i(C)| \)

state space complexity profile: the sequence \(\{ |\sum_0(C)|, |\sum_1(C)|, \ldots, |\sum_n(C)| \} \)

state space dimension profile: the sequence \((p_0, p_1, \ldots, p_n) \)
The generator matrix G

Trellis Oriented form of G

A generator matrix G is in **Trellis Oriented Form (TOF)** when for each row $g \in \{g_0, g_1, \ldots, g_{k-1}\}$

- The **leading 1**a appears in a column before the leading 1 of any row below it.
- No two rows have their **trailing 1**b in the same column.

a the first nonzero component of a row
b the last nonzero component of a row

For G_{TOGM} (trellis oriented generator matrix) we have:

1. **digit (or bit) span** of g, $\phi(g) = \{i, \ldots, j\}$, is the smallest index interval containing all nonzero components of g.
2. **time span** of g, $\tau(g) = \{i, \ldots, j+1\}$, same as bit span in terms of time
3. **Active time span**, $\tau_a(g) = [i+1, j]$, for $j > i$.
The generator matrix G

Examples

Every generator matrix can be put in TOF (by elementary row operations) which is not necessarily systematic form.

Matrix $G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix}$ is not in TOF, whereas $G_{TOGM} = \begin{pmatrix}
g_0 \\
g_1 \\
g_2 \\
g_3
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}$ is. The G_{TOGM} matrix is the G with the second and the fourth rows interchanged and the fourth row added to all the others.

Bit span an active time span example

- $\phi(g_3) = [4, 7]$
- $\tau_a(g_3) = [5, 7]$
- $\tau(g_3) = [4, 8]$
The generator matrix \(G \)

Partitioning matrix \(G_{TOGM} \) of a \((n,k)\) linear code \(C \)

At time-\(i \), \(0 \leq i \leq n \) we partition the rows of \(G_{TOGM} \) into:

1. \(G^{p}_i \): rows with bit span in the interval \([0,i-1]\)
2. \(G^{f}_i \): rows with bit span in the interval \([i,n-1]\)
3. \(G^{s}_i \): rows whose active time spans contain time-\(i \)

We can respectively partition information bits \(a_0, a_1, ..., a_{k-1} \) into:

1. \(A^{p}_i \): bits that don’t affect the encoder output after time-\(i \)
2. \(A^{f}_i \): bits that affect the encoder output only after time-\(i \)
3. \(A^{s}_i \): bits that affect the output both before and after time-\(i \)

So \(A^{s}_i \) is the encoder’s memory (or state) at time-\(i \) and \(|A^{s}_i| = p_i \)!
The generator matrix G

Partitioning matrix G_{TOGM} of a (n,k) linear code C - Example

So, for $G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ we have:

<table>
<thead>
<tr>
<th>Time</th>
<th>G_i^p</th>
<th>G_i^f</th>
<th>G_i^s</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ϕ</td>
<td>g_0,g_1,g_2,g_3</td>
<td>ϕ</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>ϕ</td>
<td>g_1,g_2,g_3</td>
<td>g_0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ϕ</td>
<td>g_2,g_3</td>
<td>g_0,g_1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ϕ</td>
<td>g_3</td>
<td>g_0,g_1,g_2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>g_0</td>
<td>g_3</td>
<td>g_1,g_2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>g_0</td>
<td>ϕ</td>
<td>g_1,g_2,g_3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>g_0,g_2</td>
<td>ϕ</td>
<td>g_1,g_3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>g_0,g_1,g_2</td>
<td>ϕ</td>
<td>g_3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>g_0,g_1,g_2,g_3</td>
<td>ϕ</td>
<td>ϕ</td>
<td>0</td>
</tr>
</tbody>
</table>
We also mention that:

- g^*: the row in G^f_i whose leading 1 is at bit position i
 - its uniqueness is guaranteed, but the existence is not.
- a^*: information bit that corresponds to row g^* (current input information bit)

The output code bit generated between time-i and time-$(i+1)$ is:

$$u_i = a^* + \sum_{l=1}^{p_i} (a^{(i)}_l \ast g^{(i)}_{l,i})$$

- a^*, if g^* exists
- $\sum_{l=1}^{p_i} (a^{(i)}_l \ast g^{(i)}_{l,i})$, if g^* doesn’t exist

$g^{(i)}_{l,i}$ is the ith component of $g^{(i)}_l$ in G^s_i

In this case we can put $a^* = 0$ (dummy information bit)
The generator matrix G

Output code bit - example

For $G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ we have:

- $G_2^s = \{g_0, g_1\}$ and $A_2^s = \{a_0, a_1\}$ (a_0, a_2 define the encoder's state at time-2)
- $g^* = g_2$ and $a^* = a_2$ (a_2 is the current input)
- $u_2 = a^* + \sum_{i=1}^{p_2} (a_i^{(2)} \ast g_i^{(2)}) = a_2 + a_0 g_{02} + a_1 g_{12} = a_2 + a_0 \ast 1 + a_1 \ast 0 = a_2 + a_0$
We also mention that:

- g^0_i : the row in G^s_i whose trailing 1 is at bit position i
 - g^0_i is the last nonzero component of g^0 (if it exists)

- a^0_i : information bit in A^s_i that corresponds to row g^0 (current input information bit)
 - it is the oldest bit information in memory at time-i

At time-$(i+1)$ we have:

- $G^s_{i+1} = (G^s_i \setminus \{g^0\}) \cup g^*$, if g^0 exists
- $A^s_{i+1} = (A^s_i \setminus \{a^0\}) \cup a^*$, if a^0 exists
State labeling
In a code trellis, each state is labeled based on the information set that defines the state space at a particular encoding time instant.
The label \(l(s) \) of a state \(s \) is set to zero except for the components at the positions corresponding to the information bits in \(A^s_i = \{ a^i_1, a^i_2, ..., a^i_{p_i} \} \).
Thus, the label of the state \(s_i \) is: \(l(s_i) = (a^i_1, a^i_2, ..., a^i_{p_i}) \).

Labeling Example
If at time \(i=4 \) we have \(A^s_4 = \{ a_1, a_2 \} \), then \(l(s_4) = (0, a_1, a_2, 0) \).
Now we are ready to construct a trellis diagram:

To construct the bit-level trellis diagram, all we need is:

- G_i^{s+1}
- A_i^s
- A_i^{s+1}
- A_{i+1}^s
Construction of a bit-level trellis with generator matrix

The construction steps are:

1. Determine G_{i+1}^s and A_{i+1}^s.
2. Form the state space $\sum_{i+1}(C)$ at time-(i+1).
3. For each state $s_i \in \sum_i(C)$, determine its transition(s) based on the change from A_i^s to A_{i+1}^s (bits a^0 and a^*).
4. Connect s_i to its adjacent state(s) in $\sum_{i+1}(C)$ by branches.
5. For each transition, determine the output code bit u_i.
6. Use this u_i to label the corresponding branch.
Construction of a bit-level trellis

So for $G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ we have:

<table>
<thead>
<tr>
<th>Time</th>
<th>G^s_i</th>
<th>a^*</th>
<th>a^0</th>
<th>A^s_i</th>
<th>State Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ϕ</td>
<td>a_0</td>
<td>-</td>
<td>ϕ</td>
<td>(0000)</td>
</tr>
<tr>
<td>1</td>
<td>g_0</td>
<td>a_1</td>
<td>-</td>
<td>a_0</td>
<td>(a0000)</td>
</tr>
<tr>
<td>2</td>
<td>g_0,g_1</td>
<td>a_2</td>
<td>-</td>
<td>a_0,a_1</td>
<td>(a0a100)</td>
</tr>
<tr>
<td>3</td>
<td>g_0,g_1,g_2</td>
<td>-</td>
<td>a_0</td>
<td>a_0,a_1,a_2</td>
<td>(a0a1a20)</td>
</tr>
<tr>
<td>4</td>
<td>g_1,g_2</td>
<td>a_3</td>
<td>-</td>
<td>a_1,a_2</td>
<td>(0a1a20)</td>
</tr>
<tr>
<td>5</td>
<td>g_1,g_2,g_3</td>
<td>-</td>
<td>a_2</td>
<td>a_1,a_2,a_3</td>
<td>(0a1a3a3)</td>
</tr>
<tr>
<td>6</td>
<td>g_1,g_3</td>
<td>-</td>
<td>a_1</td>
<td>a_1,a_3</td>
<td>(0a10a3)</td>
</tr>
<tr>
<td>7</td>
<td>g_3</td>
<td>-</td>
<td>a_3</td>
<td>a_3</td>
<td>(000a3)</td>
</tr>
<tr>
<td>8</td>
<td>ϕ</td>
<td>-</td>
<td>-</td>
<td>ϕ</td>
<td>(0000)</td>
</tr>
</tbody>
</table>
Computing all u_i for labeling the branches, we come to the end!

So, the trellis we obtain is:
A trellis’ complexity is:

- **the branch complexity**: the number of branches
- **the state complexity**: the maximum state space dimension $p_{max}(C)$

A minimal trellis

The trellis T is said to be minimal if for any other n-section trellis T' for C with state space dimension profile $(p'_0, p'_1, p'_2, ..., p'_n)$ the following inequality holds: $p_i \leq p'_i$, for $0 \leq i \leq n$.

The minimal trellis has the minimal total number of states and is also a minimal branch trellis (with smallest branch complexity).
Parallel Decomposition For Minimal Trellis

Why?
A minimal code trellis is generally densely connected. So there is a difficulty in implementation.

To address that problem, we can decompose the trellis into parallel and structurally identical subtrellises of smaller dimensions without cross-connections between them.
Decomposition of minimal trellis into minimal parallel subtrellises

We define the following index set:
\(I_{\text{max}}(C) = \{ i : p_i(C) = p_{\text{max}}(C), \text{ for } 0 \leq i \leq n \} \)

Theorem

If there exists a row \(g \) in the \(G_{\text{TOGM}} \) for an \((n,k) \) linear code \(C \) such that \(\tau_a(g) \supseteq I_{\text{max}}(C) \), then the subcode \(C_1 \) of \(C \) generated by \(G_{\text{TOGM}} \setminus \{ g \} \) has a minimal trellis \(T_1 \) with the maximum state space dimension \(p_{\text{max}}(C_1) = p_{\text{max}}(C) - 1 \), and
\(I_{\text{max}}(C_1) = I_{\text{max}}(C) \cup \{ i : p_i(C) = p_i(\text{max}) - 1, \text{ i not in } \tau_a(g) \} \).

If \(G \) is in TOF, \(G_1 = G \setminus \{ g \} \) is also in TOF. If theorem holds, then we can decompose \(C \) into two parallel and structurally identical subtrellises, one for \(C_1 \) and the other for the coset \(C_1 \oplus g \).
Parallel Decomposition-Example

For $G_{TOGM} = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ we have: $I_{max}(C)=[3,5]$ as state space dimension is $(0,1,2,3,2,3,2,1,0)$ and $p_{max}(C)=3$. The only row whose active time span τ_a contains $I_{max}(C)$ is g_1 where $\tau_a(g_1)=[2,6]$. So, $G_1 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$
Parallel Decomposition-Example

Constructing the trellis for both C_1 and $g_1 \oplus C_1$ we get the following parallel decomposition: