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Abstract—This work experimentally demonstrates RF source
location estimation error on the order of 50m, with received
signal strength (RSS) measurements, from a network of smart-
phone users, within 800m (or more) from the source. This
work incorporates careful modeling of the time-varying source
transmission power, source antenna directionality (even with a
simple 4-parameter model) and different path loss exponents
among the various source-user links. More importantly, a vast
number of RSS measurements is collected and exploited through
the automated community smartphone network. The proposed
methodology could be extended to other wireless scenarios.

Index Terms—Localization, RF Sources, RSS, community RF
sensing, non-parametric estimation, particle filtering.

I. INTRODUCTION

THIS work experimentally studies the problem of RF
source location estimation, using a large collection of

received signal strength (RSS) measurements, readily available
from a community of mobile telephony, smartphone users.
Specifically, approximately 1 measurement per second per
smartphone user for a period of 7 months was automatically
collected, utilizing a community of smartphone users as RF
sensors of a common source (i.e. the base station).

Relevant literature in RSS-based RF source localization is
quite rich. Localization error on the order of a few tens of
meters is reported with Wi-Fi terminals and communication
ranges on the order of tens of meters (e.g. work in [1] and
references therein), as opposed to ranges on the order of
hundreds of meters in this paper. Work in [2] solves a semi-
definite programming problem (SDP), assuming a common
and known path loss exponent (PLE) between RF source
and measuring terminals, with unknown, time-constant RF
source transmitted power. Work in [3] assumes that the PLE is
unique across all measuring terminals and unknown, the RF
source power is constant and known and offers a nonlinear
least-square estimator. Work in [4] proposes a weighted least
squares solution, considering both transmitted power and (the
unique) PLE, constant and unknown. Moreover, work in [5]
follows the same assumptions and exploits measurements
collected by a moving sensor. Work in [6] assumes different
PLE per measuring terminal and each grid point receives
votes, based on a bounding-voting procedure; the grid point
with the most votes is the estimated emitter location. All
the aforementioned approaches are based on simulated data.
Examples of experimental cell tower localization, based on
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Fig. 1. Implemented community RF sensing: measurements from users’
smartphones (e.g. RSS, GPS user location) are gathered at a web database.
Mobile coverage maps and measurements (for 7 months, approx. 1 measure-
ment per user per sec) are available (www.mysignals.gr/dataset.zip).

the strongest measurement or a weighted average of the K-
strongest measurements [7], [8], [9], or user localization, based
on modeling of the coverage areas with a student distribution
[10], exploit wardriving (a.k.a. fingerprinting): RSS measure-
ments and their respective GPS location are recorded, while
moving in a specific area, before any processing is applied.

In sharp contrast to prior art, this work utilizes a vast col-
lection of real world RSS measurements based on community
RF sensing. Moreover, in sharp contrast to prior art, PLEs
across different users are considered unequal and unknown,
transmission power from source is considered time-varying,
while cases between directional or isotropic source antenna are
both considered. It is shown that the adoption of a directional
antenna model, even a simple one, in conjunction with the rest
of the aforementioned realistic assumptions, as well as the vast
number of measurements - due to community RF sensing - can
significantly reduce the absolute location error. Experimental
results with absolute error on the order of 50m are reported,
where the sources are real-world deployed mobile telephony
base stations within extended ranges on the order of 800m
from the measuring users-RF sensors.

II. LARGE-SCALE MEASUREMENT CAMPAIGN AND
PROBLEM FORMULATION

A network of N mobile smartphone users record the RSS
(in dBm) of specific base station cells, as well as their
own location, through the GPS module of their smartphone
(Fig. 1). Measurements and relevant information (e.g. cell
ID, downlink carrier frequency and mobile user location)
are uploaded periodically at a web server [11]. The known
static location of user j is denoted as xj

△
=

[
xj yj

]T
and the location of the RF source (i.e. base station) to be
estimated as xBS =

[
xBS yBS

]T
. The collection of all user

locations is denoted by x
△
=

[
x1 · · · xN

]
. Each user j

at a specific location records κ RSS measurements at time
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instances t1, t2, . . . , tκ, for each specific cell ID z[j,cID] △
=[

P
(t1)
[j,cID] · · · P

(tκ)
[j,cID]

]T
and the collection of all measurements

is denoted by z[cID] △
=

[
z[1,cID] · · · z[N,cID]

]
.

The RSS measurement (in dBm) for user j at a specific cell
is modeled as a random variable distributed according to the
log-normal distribution, with distinct PLE and variance:

P
(t)
[j,cID] = P

(t)
0 − 10nj log10

(
||xBS − xj ||2

d0

)
+ w

(t)
j , (1)

where P
(t)
0 is the received power at reference distance d0 and

calculated at d0 = 1m in this work using the free-space path
loss (Friis) transmission equation, with downlink frequency
corresponding to the specific cell ID (typically at the 1800
MHz regime), user antenna gain equal to 0 dBi and base station
antenna gain as explained below. Parameters nj , wj are the
PLE and measurement noise, respectively, of the specific user
j. Measurement noise is modeled as a zero-mean Gaussian
with variance σ2

j (expressed in dB); noise r.v’s are assumed
independent across different users. It is noted that in contrast to
this work, prior art has mainly focused on propagation models
where the PLE is assumed equal across all users.

Eq. (1) implicitly assumes that the transmission power of the
RF source is the same when the signal is received at reference
distance d0 or at distance ||xBS − xj ||2. However, that may
not be practically useful in experimental setups. For example,
there is a specific downlink channel, used by GSM phones
to measure the RSS, where two different transmission power
levels are utilized from the base station-RF source [12].

In this work, the transmission power P (t)
TX of the RF source

is modeled as a binary random variable with values PMIN and
PMAX. The exact value of P

(t)
TX is a priori unknown and must

be estimated. A Markov chain is used to model the transition
between P

(t)
TX and P

(t+1)
TX with transition probabilities that

depend on the traffic load (Fig. 2); when traffic load increases,
the probability for transmission at maximum power will also
increase [11], [13].

A typical base station consists of three (or more) sectors
(cells) typically served by directional antennas. A simplified
4-parameter model of a directional antenna is used in this
work (Fig. 3) and will be contrasted to the isotropic antenna
model. Specifically, a main antenna lobe at angle direction ϕ
is assumed (in respect to the x-axis), with lobe opening of
2ϕs. The base station-RF source antenna gain at direction ϕj

is given by (Fig. 3):

GH(ϕj , ϕ) =


G0, ϕ− ϕs ≤ ϕj ≤ ϕ+ ϕs,

GSLL, ϕ+ ϕs < ϕj ≤ ϕ+ 2ϕs

or ϕ− ϕs > ϕj ≥ ϕ− 2ϕs,

GBLL, elsewhere.

(2)

For the numerical results section, ϕs = 30◦, G0 = 0 dB,
GSLL = −3 dB for the side lobe levels and GBLL = −23 dB
for the backside lobe level (BLL) (e.g. similar values for BLL
can be found in [14]). The angle direction ϕ of base station-RF
source antenna is unknown and must be estimated, while for
the omnidirectional (isotropic) base station-RF source antenna,

PMAX

PMIN PMIN

PMAX

a[t]
1
−

a[t]

1−
b[t]

P
(t)
TX P

(t+1)
TX

b[t]

Fig. 2. The two-level RF source transmission power Markov model for the
power control at the broadcast control channel (BCCH) [12].

GH(ϕj , ϕ) = 0 dB, ∀(ϕj , ϕ). Thus, the RF source radiated
power at angle ϕj can be expressed as:

P
(t)
TX (ϕj , ϕ) = P

(t)
TX +GH(ϕj , ϕ) (dBm). (3)

The goal is to estimate vector θ(t), with all the unknowns
(including RF source coordinates), from real-world measure-
ments z[cID], provided by the community of N smartphones-RF
sensors. Measurements for 7 months were collected (approx.
1 measurement per smartphone user per sec):

θ(t) △
=

[
xBS yBS ϕ P

(t)
TX n1 · · ·nN

]T
. (4)

Thereinafter, U [a, b] denotes the uniform distribution in
[a, b] and N (a, b) denotes the Gaussian distribution with
expected value a and variance b.

III. LOCALIZATION CASE STUDY

It was experimentally found that an initial estimate of the
PLEs (to be refined in a latter step) reduced the localization
error, compared to the case where PLEs were randomly
initialized. That can be attributed to the fact that a small
variance in PLE significantly alters RSS, according to Eq. (1).
Initial Estimation of PLEs: Assuming availability of an initial
estimate x̂init

BS and d0 = 1m, an initial estimate of n̂j results
from Eq. (1):

n̂j =
P 0MAX − (1/κ)

∑κ
i=1 P

(ti)
[j,cID]

10 log10 ∥xj − x̂init
BS∥2

,∀ j, (5)

where P 0MAX is the received power at d0 = 1m given by the
Friis transmission equation (free space path-loss), assuming
that the base station is transmitting at PMAX and κ RSS

x
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Fig. 3. Simple 4-parameter RF source directional antenna gain modeling.
Parameters G0, ϕs, GSLL, GBLL are needed.
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(a) N = 4 users, Isotropic Antenna.
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(b) N = 5 users, Isotropic Antenna.
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(c) N = 5 users, Directional Antenna.

Fig. 4. Results for cell-ID 60562 located at the city of Chania city center. K = 2000 different PF runs were performed. T = 60 min.

measurements were randomly selected for each user j. An
initial estimate of x̂init

BS is given by the voting algorithm in [6],
where PLEs are considered unknown and bounded.
Particle Filtering: The probability density p(θ|z[cID]) is mod-
eled and estimated with non-parametric procedures based on
particle filtering [15]. Specifically, M particles at time t are
considered, with corresponding weights {w[m]

t }:{
θ
[m]
t =

[
x
[m]
BS y

[m]
BS ϕ[m] P

(t),[m]
TX n

[m]
1 · · ·n[m]

N

]T}
.

The RF source is assumed static (i.e. immobile) where
(for the case of RF source directional antenna), each cell
is illuminated by the corresponding directional antenna at a
fixed direction (unchanged for the measurement duration).
Moreover, for the time window of utilized experiments, the
PLEs are considered constant.

Thus, the update operation of particle filtering is restricted
to the transmission power of the base station and is given by:

P
(t),[m]
TX ∼ Pr

(
P

(t),[m]
TX |P (t−1),[m]

TX

)
, (6)

where the conditional probability is described by the Markov
chain of Fig. 2.

The correction operation for each particle weight at time t
is given by:

w
[m]
t = p

(
z(t)|θ[m]

t

)
=

N∏
j=1

p
(
P

(t)
[j] |θ

[m]
t

)
, (7)

where independence of RSS measurements across different
users has been exploited. The conditional p.d.f. value of each
measurement is based on the log-normal p.d.f. (Eq. (1)):

p
(
P

(t)
[j] |θ

[m]
t

)
=

1

σj

√
2π

exp

(
−
(
P

(t)
[j] − P

(t)
[m,j]

)2/
2σ2

j

)
.

(8)

Parameter P
(t)
[m,j]

△
= E

[
P

(t)
[j] |θ

[m]
t

]
is the expected value of

RSS at location xj , given θ
[m]
t :

P
(t)
[m,j] = P

(t),[m]
0 − 10n

[m]
j log10

(
∥x[m]

BS − xj∥2/d0
)
, (9)

where P
(t),[m]
0 is the received signal strength at reference

distance d0 = 1m calculated by the Friis transmission equation

with base station transmission power equal to P
(t),[m]
TX and base

station cell antenna gain given by Eq. (2). Angle ϕj for user
j given x

[m]
BS , y

[m]
BS is easily calculated from Fig. 3:

ϕj = arctan
(
(yj − y

[m]
BS )/(xj − x

[m]
BS )

)
. (10)

The standard deviation σj is estimated from the whole mea-
surement data-set for user j at a specific location, exploiting
standard techniques for parameter estimation with Gaussian
random variables (the RSS in dBm values are assumed Gaus-
sian random variables according to Eq. (1)) [16].

Finally, the low-variance sampling procedure of the particles
was utilized [15]. The pseudo-code of the PF follows.

PF Algorithm: Particle Filtering for estimating p(θ|zs)

(1): Initialization of Variables:
(2): Set M (number of Particles),
(3): X,Y (dimensions of area of interest), T (time window).
(4): Initialization of Particles, ∀ m = 1 : M
(5): x

[m]
t=0 ∼ U [0, X], y

[m]
t=0 ∼ U [0, Y ], ϕ

[m]
t=0 ∼ U [0, 2π].

(6): P
(t=0),[m]
TX = b, b ∈ {PMIN, PMAX}, Pr(b) = 0.5.

(7): n
[m]
j,t=0 ∼ N

(
n̂j , σ

2
n

)
, with n̂j from (5).

(8): θ
[m]
t=0=

[
x
[m]
BS y

[m]
BS ϕ[m] P

(t),[m]
TX n

[m]
1 · · ·n[m]

N

]T
.

(9): zs ← Select T consecutive RSS measurements from z[cID]

(10): for t = 1 : T do {time-step}
(11): for m = 1 : M do {particle index}
(12): Sample P

(t),[m]
TX ∼ Pr

(
P

(t),[m]
TX |P (t−1),[m]

TX

)
.

(13): Calc. ϕj , ∀j, from (10).
(14): Calc. P (t)

TX (ϕj , ϕ
[m]), ∀j from (3) given θ

[m]
t .

(15): w
[m]
t = p

(
z(t),s|θ[m]

t

)
, from (7).

(16): end for
(17) Normalize weights w

[1:M ]
t .

(18) θ
[1:M ]
t ← Low-VarianceSampler

(
θ
[1:M ]
t ,w

[1:M ]
t

)
.

(19): end for

At the end of particle filtering algorithm the final particles
θ
[1:M ]
T produce an estimate of the conditional density function

p(θ|zs) using the histogram approach [15]. With marginaliza-
tion, an estimate of the conditional density function p(xBS|zs)
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is readily available. The estimate of base station location x̂BS
is offered by the conditional mean:

x̂BS = [x̂BS ŷBS]
T = E[xBS|zs]. (11)

The procedure could be repeated for K different zs and the
average value of all estimates produces the final outcome:

x̂mean
BS =

K∑
k=1

1

K
[x̂k

BS ŷkBS]
T . (12)

IV. NUMERICAL RESULTS

Numerical results are reported for real-world measurements
from similar sensitivity smartphones and comparison with
prior art is limited to techniques applicable to real-world, non-
simulated data. Number of particles M is set to M = 140000,
X = Y = 1000 m and T = 60 min (line (2) of the algorithm),
with approximately 1 measurement per minute per user. In line
(7) of the algorithm, σn = 0.3 has been selected heuristically,
since a smaller value resulted in particle depletion [15], while
a larger value also required a larger number of particles; values
PMAX = 43.5 dBm, PMIN = 41.5 dBm were provided by
the mobile telephony provider specifications. Location of the
N users-smartphones was apriori known (in order to avoid
smartphone GPS inaccuracies) and RSS measurements for the
GSM modem were utilized (3G RSS measurements were also
readily available).

Fig. 4-(a) offers the final estimated base station-RF source
location, when K = 2000 different datasets of measurements
were used, for N = 4 users and a specific cell (60562). In
other words, 2000× 60× 4 = 480000 independent RSS mea-
surements were utilized. The RF source antenna was assumed
isotropic (no directionality). The reported estimated value is
based on Eq. (12) and the true location is also depicted.
An additional user is added in Fig. 4-(b) (i.e. N = 5) and
the estimation is repeated without significant improvement.
When the antenna directionality model is included (Fig. 4-(c)),
specific areas of interest are excluded and the final estimate is
significantly improved. In other words, the rich measurement
dataset, due to the community RF sensing infrastructure, was
beneficial when the (simple) base station-RF source antenna
directionality model was incorporated.

Table 1 shows that the absolute location error in cell
60562 with base station-RF source directionality modeling is
approximately three times smaller (scenario 6) compared to the
case with isotropic antennas (scenarios 4, 5). It is emphasized
that the reported localization error on the order of 50m is
achieved even when communication distances between smart-
phone users and RF source can exceed 800m. Performance

Absolute Localization Error(m)
1 2 3 4 5 6

60561 516.9 382.4 126.7 93.6 84.2 48.2
60562 277.7 419.2 158.3 145.7 149.6 58.3

TABLE I
1. TOP-K RSSI, 2. STRONGEST RSSI, 3. GRID VOTING. 4., 5.

PF-ISOTROPIC ANTENNA (N = 4 AND N = 5 RESPECTIVELY), 6.
PF-DIRECTIONAL ANTENNA.

of other techniques applicable to real-world measurements
(and discussed in the introduction), namely top-K (scenario
1), strongest RSS (scenario 2) [7], [8], [9] and grid voting [6]
(scenario 3, Eq. (5), κ = 1500) are also reported. Similar
results were obtained for other cells (e.g. cell 60561) [11].

V. CONCLUSION

A large number of RSS measurements, through an auto-
mated community user network, can significantly improve the
location estimate of a RF source, as this work experimentally
demonstrated, even when distances between RF source and
users exceed 800m. The proposed methodology is a concrete
example of a crowd-sensing application [17] and could be
extended to other RF source transmission power/antenna di-
rectionality models and wireless propagation scenarios.
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