
Codes on Graphs

Telecommunications Laboratory
Alex Balatsoukas-Stimming

Technical University of Crete

November 27th, 2008

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 1 / 33

Outline

1 Marginalization of a Function
Factor Graphs
The Sum-Product Algorithm

2 Codes on Graphs
The Iverson Function
Graph of a Code
Decoding on a Graph: Using the Sum-Product Algorithm

3 LDPC Codes
Desirable Properties
Construction of LDPC Codes

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 2 / 33

Symbol MAP decoding

Assume that we want to minimize the error probability of a single
symbol of the code word. In this case, we must do symbol-MAP
decoding.

The rule is:
x̂i = arg max

xi

p(xi |y)

where
p(xi |y) =

∑

x∈Ci (xi)

p(x|y)

The above is a marginalization problem.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 3 / 33

Marginalization (1/2)

We associate with a function f (x1, x2, . . . , xn) its n marginals, defined
as follows:

fi(xi) =
∑

x1

. . .
∑

xi−1

∑

xi+1

. . .
∑

xn

f (x1, x2, . . . , xn)

For each value of xi , these are obtained by summing the function f

over all of its arguments consistent with xi .

A more convenient notation for the above is:

fi(xi) =
∑

∼xi

f (x1, . . . , xn)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 4 / 33

Marginalization (2/2)

If xi ∈ X , then the complexity of the above summation grows as
|X |n−1

If f can be factored as a product of functions, the computation can
be simplified.

For example, consider the function:

f (x1, x2, x3) = g1(x1, x2)g2(x1, x3)

The marginal f1(x1) can be computed as:

f1(x1) =
∑

∼x1

f (x1, x2, x3) =
∑

x2

∑

x3

g1(x1, x2)g2(x1, x3)

=
∑

x2

g1(x1, x2) ·
∑

x3

g2(x1, x3)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 5 / 33

Factor Graphs (1/2)

The above procedure can be graphically represented with a factor
graph:

The nodes are viewed as processors which compute a function whose
arguments label the incoming edges.

The edges are channels by which these processors exchange data.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 6 / 33

Factor Graphs (2/2)

Every factor corresponds to a unique node, and every variable to a
unique edge or half edge.

The factors gi are called local functions or constraints.

The function f is called the global function.

Edges connect nodes, half edges connect variables with nodes.

A cycle of length λ is a path that includes λ edges and closes back on
itself. The girth of a graph is the minimum cycle length of the graph.

In a normal factor graph, no variable appears in more than two
factors.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 7 / 33

The Sum-Product Algorithm (1/3)

We will now introduce an algorithm for the efficient computation of
the marginals of a function described as a (normal) factor graph.

This algorithm works when the graph is cycle-free, and yields the
marginal function corresponding to each variable associated with an
edge.

The Sum-Product Algorithm is a message passing algorithm, because
at each iteration, messages are passed along the edges of the graph.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 8 / 33

The Sum-Product Algorithm (2/3)

Consider the node representing the factor g(x1, . . . , xn) of a global
function f (x1, . . . , xm)

The message passed along the edge corresponding to xi is:

µg→xi
(xi) =

∑

∼xi

g(x1, . . . , xn)
∏

λ6=i

µxλ→g (xλ)

which is the product of g and all messages towards g along all edges
except xi , summed over all the variables except xi .

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 9 / 33

The Sum-Product Algorithm (3/3)

The messages µxj→g (xj) are either the values of xj , if we have a half
edge, or the message coming from the node at the other end of the
edge.

The marginal of the global function with respect to xi , is given by the
product of all messages exchanged by the SPA over the edge
corresponding to xi :

fxi
(xi) =

∏

j

µgj→xi
(xi)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 10 / 33

The Sum-Product Algorithm (Example)

Consider a burglar alarm which is sensitive not only to burglary, but
also to earthquakes. There are 3 binary variables: a, b, e (for alarm,
burglary, and earthquake respectively). A value of 1 indicates that the
corresponding event has occured. We want to infer the probability of
the two possible causes, given that the the alarm went off:

p(b|a = 1) and p(e|a = 1)

These can be computed by marginalizing p(b, e|a = 1)

Asumming that b, e are independent, we have:

(b, e|a = 1) =
p(a = 1|b, e)p(b)p(e)

p(a = 1)
∝ p(a = 1|b, e)p(b)p(e)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 11 / 33

The Sum-Product Algorithm (Example)

So, we have factored the function we want to marginalize and the
corresponding factor graph is:

where

fb(b) , p(b) fe(e) , p(e) f (b, e) , p(a = 1|b, e)

We are given the following data:

fb(0) = 0.9 fb(1) = 0.1
fe(0) = 0.9 fe(1) = 0.1

and
f (0, 0) = 0.001 f (1, 0) = 0.368
f (0, 1) = 0.135 f (1, 1) = 0.607

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 12 / 33

The Sum-Product Algorithm (Example)

The messages from nodes fb and fe to node f will be:

µfb→b(b) = (0.9, 0.1)
µfe→e(e) = (0.9, 0.1)

Once node f has received the above messages, it can compute the
messages for nodes fb and fe :

µf →b(b) =
∑

e

f (b, e)µfe→e(e)

= (0.001 × 0.9
︸ ︷︷ ︸

e=0

+ 0.135 × 0.1
︸ ︷︷ ︸

e=1
︸ ︷︷ ︸

b=0

, 0.368 × 0.9
︸ ︷︷ ︸

e=0

+ 0.607 × 0.1
︸ ︷︷ ︸

e=1
︸ ︷︷ ︸

b=1

)

= (0.0144, 0.3919)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 13 / 33

The Sum-Product Algorithm (Example)

Similarly, we can compute µf →e(e) = (0.0377, 0.1822)

The marginals sought can now be written as:

p(b|a = 1) ∝ µfb→b(b) · µf →b(b) = (0.01296, 0.03919)

and

p(e|a = 1) ∝ µfe→e(e) · µf →e(e) = (0.03393, 0.01822)

After scaling of these vectors so the sum of their elements is 1, we
have:

p(b|a = 1) = (0.249, 0.751)

p(e|a = 1) = (0.651, 0.349)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 14 / 33

Codes on Graphs

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 15 / 33

The Iverson Function

Let P denote a proposition that may be either true or false.

The Iverson function is defined as:

[P] =

{
1, P is true
0, P is false

If we have n propositions, we have the factorization:

[P1 and P2 and . . . and Pn] = [P1][P2] . . . [Pn]

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 16 / 33

Graph of a Code (1/4)

Consider the parity-check matrix:

H =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1





of a (7, 4, 3) Hamming code.

All codewords satisfy the following parity checks:

x1 + x4 + x6 + x7 = 0

x2 + x4 + x5 + x6 = 0

x3 + x5 + x6 + x7 = 0

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 17 / 33

Graph of a Code (2/4)

Using the Iverson function, we can express membership of a codeword
x in the code as follows:

[x ∈ C] = [HxT = 0]

In our case, the above function can be factored as follows:

[x ∈ C] = [x1+x4+x6+x7 = 0][x2+x4+x5+x6 = 0][x3+x5+x6+x7 = 0]

A Tanner graph is a graphical representation of a linear block code
corresponding to the set of parity checks that specify the code.

Each symbol (variable node) is represented by a filled circle (•), and
every parity check by a check node (⊕).

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 18 / 33

Graph of a Code (3/4)

Tanner graphs are bipartite, meaning that variable nodes can only be
connected to check nodes, and vice versa.

A Tanner graph may contain cycles, but since they are bipartite, their
minimum girth is 4.

For the Hamming code we defined above, the corresponding Tanner
graph will be:

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 19 / 33

Graph of a Code (4/4)

Since a given code can be represented by several parity-check
matrices, the same code can be represented by several Tanner graphs.
Some representations may have cycles while others may be cycle-free.

Each variable node (•) corresponds to one bit of the codeword, i.e. to
one column of H

Each check node (⊕) corresponds to one parity check equation, i.e.
to one row of H

A connection between variable node j and check node i only exists if
Hij = 1

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 20 / 33

Decoding on a Graph: Using the Sum-Product Algorithm

(1/2)

Consider the symbol-MAP decoding problem stated earlier:

p(x|y) ∝ p(y|x)p(x)

For a stationary memoryless channel, we have:

p(y|x) =

n∏

i=1

p(yi |xi)

Using the Iverson function and assuming that the a priori distribution
of codewords is uniform, we can write:

p(x) = [x ∈ C]
1

|C|

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 21 / 33

Decoding on a Graph: Using the Sum-Product Algorithm

(2/2)

From the above we get that:

p(x|y) ∝ [x ∈ C]

n∏

i=1

p(yi |xi)

which is in a factored form, so it can be represented by a normal
factor graph.

To compute p(xi |yi) we can marginalize the above function using the
sum-product algorithm on the graph.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 22 / 33

The Sum-Product Algorithm on Graphs with Cycles

On a cycle-free graph, the SPA yields the exact APP distribution of
the code word symbols in a finite number of steps.

Codes whose Tanner graphs are cycle-free have a rather poor
performance.

On a graph with cycles, the algorithm may not converge, or it may
converge to a wrong result.

If short cycles are avoided, in most practical cases, the algorithm does
converge and yields the correct answer.

For LDPC codes it is proved that as n grows asymptotically large, the
assumption of a graph without cycles holds.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 23 / 33

LDPC Codes

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 24 / 33

Low-Density Parity-Check Codes (1/2)

LDPC codes are long linear block codes. As the name implies, their
parity-check matrix has a low density of non-zero entries.

Specifically, for a regular LDPC code, H contains a small number of
1s in each column, denoted wc , and a small number of 1s in each
row, denoted wr .

For irregular LDPC codes, the values of wc and wr are not constant.

Since each column corresponds to one bit of the codeword, wc tells us
in how many parity check equations that bit participates.

Accordingly, since each row corresponds to a parity check equation,
wr tells us how many bits participate in each equation.

If the block length is n, we say that H characterizes a 〈n,wc ,wr 〉
LDPC code.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 25 / 33

Low-Density Parity-Check Codes (2/2)

If there are m parity check equations, each involving wr bits, and each
of the n coded symbols participates in wc equations, it must hold
that:

nwc = mwr ⇔ m =
nwc

wr

where m is the number of rows in H.

If H is full rank, then the rate of the code is:

n − m

n
= 1 −

wc

wr

which yields the constraint wc ≤ wr

The actual rate of the code might be higher than the above, if the
parity checks are not independent. We call ρ∗ , 1 − wc/wr the
design rate of the code.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 26 / 33

Desirable Properties

The Tanner graph corresponding to the code should have a large
girth, for good convergence properties of the iterative decoding
algorithm.

Regularity of the code eases implementation.

For good performance at high SNR on the AWGN channel, the
minimum Hamming distance must be large. LDPC codes are known
to achieve a large value of dHmin

The techniques for the design of parity-check matrices of LDPC codes
can be classified under two main categories:

1 Random constructions.
2 Algebraic constructions.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 27 / 33

Random Constructions (1/2)

They are based on generating the parity-check matrix randomly filled
with 0s and 1s, while satisfying some constraints.

After selecting values for the parameters n, ρ∗,wc , we can compute
the value of wr .

For a regular code, row and column weights of H must be exactly
wr and wc respectively.

Additional constraints can be included, e.g. the number of 1s in
common between any two columns (or rows) should not exceed one,
in order to avoid length-4 cycles.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 28 / 33

Random Constructions (2/2)

A method for the random construction of H was developed by
Gallager:

The parity-check matrix H of a regular 〈n,wc ,wr 〉 LDPC code has
the form:

H =








H1

H2
...

Hwc








H1 has n columns and n/wr rows, contains a single 1 in each column,
and contains 1s in its i-th row from column (i − 1)wr + 1 to column
iwr .

All other matrices are obtained by randomly permuting the columns
of H1.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 29 / 33

Random Constructions (Example)

For example, for ρ∗ = 1/2, wc = 2 and n = 12, we have:

ρ∗ = 1 −
wc

wr

⇒ wr = 4

Using the method mentioned above, we have:

H1 =





1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1





The column weight of H1 is 1, the row weight is wr and the matrix is
n/wr × n.

We will need wc − 1 = 1 permutation of this matrix to create H.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 30 / 33

Random Constructions (Example)

One possible permutation is:

H2 =





1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1





So, the final matrix will be:

H =

[
H1

H2

]

=













1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1













Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 31 / 33

Algebraic Constructions (1/2)

Algebraic LDPC codes are more easily decodeable than random codes.

A simple algebraic construction works as follows: choose
p > (wc − 1)(wr − 1) and consider the p × p matrix obtained from
the identity matrix Ip by cyclically shifting its rows by one position to
the right:

J =










0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0










The λ-th power of J is obtained from Ip by cyclically shifting its rows
by (λ mod p) positions to the right.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 32 / 33

Algebraic Constructions (2/2)

Construct the matrix:

H =










J0 J0 J0 . . . J0

J0 J1 J2 . . . Jwr−1

J0 J2 J4 . . . J2(wr−1)

...
...

...
. . .

...

J0 Jwc−1 J2(wc−1) . . . J(wc−1)(wr−1)










where J0 = Ip

This matrix has wcp rows and wrp columns. The number of 1s in
each row and column is exactly wr and wc respectively.

It can be proven that no length-4 cycles are present.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 33 / 33

	Marginalization of a Function
	Factor Graphs
	The Sum-Product Algorithm

	Codes on Graphs
	The Iverson Function
	Graph of a Code
	Decoding on a Graph: Using the Sum-Product Algorithm

	LDPC Codes
	Desirable Properties
	Construction of LDPC Codes

