Codes on Graphs

Telecommunications Laboratory

Alex Balatsoukas-Stimming

Technical University of Crete

November 27th, 2008

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 1/33

@ Marginalization of a Function
@ Factor Graphs
® The Sum-Product Algorithm

© Codes on Graphs
@ The lverson Function

@ Graph of a Code
@ Decoding on a Graph: Using the Sum-Product Algorithm

© LDPC Codes

@ Desirable Properties
@ Construction of LDPC Codes

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 2/33

Symbol MAP decoding

@ Assume that we want to minimize the error probability of a single
symbol of the code word. In this case, we must do symbol-MAP
decoding.

@ The rule is:

%i = argmax p(xi|y)

where

pxily)= > p(xly)

x€Ci(x;)

@ The above is a marginalization problem.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 3/33

Marginalization (1/2)

@ We associate with a function f(x1, x2,...,x,) its n marginals, defined
as follows:

f(x,)—z ZZ fol,x2,..., n)

@ For each value of x;, these are obtained by summing the function f
over all of its arguments consistent with x;.

@ A more convenient notation for the above is:

fi(xi) =Y flx1,... n)

~Xj

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 4/33

Marginalization (2/2)

o If x; € X, then the complexity of the above summation grows as
|X‘”_1
@ If f can be factored as a product of functions, the computation can
be simplified.
@ For example, consider the function:
f(x1,x2,x3) = g1(x1, x2)g2(x1, x3)
@ The marginal fi(x1) can be computed as:

filx1) = Zf(xl,xz,xe,)ZZZgl(Xl,Xz)gz(Xl,Xs)

~X1

= > ala,)Y &la,x)
X X3

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 5/33

Factor Graphs (1/2)

@ The above procedure can be graphically represented with a factor
graph:

X2 x1 x3
o— al 2 —e

@ The nodes are viewed as processors which compute a function whose
arguments label the incoming edges.

@ The edges are channels by which these processors exchange data.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 6 /33

Factor Graphs (2/2)

@ Every factor corresponds to a unique node, and every variable to a
unique edge or half edge.

The factors g; are called local functions or constraints.
The function f is called the global function.

Edges connect nodes, half edges connect variables with nodes.

A cycle of length X is a path that includes A edges and closes back on
itself. The girth of a graph is the minimum cycle length of the graph.

@ In a normal factor graph, no variable appears in more than two

factors.
x2 x1 x3
o—— ol 2 |—e
half edge edge half edge
local function local function

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 7 /33

The Sum-Product Algorithm (1/3)

@ We will now introduce an algorithm for the efficient computation of
the marginals of a function described as a (normal) factor graph.

@ This algorithm works when the graph is cycle-free, and yields the
marginal function corresponding to each variable associated with an
edge.

@ The Sum-Product Algorithm is a message passing algorithm, because
at each iteration, messages are passed along the edges of the graph.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 8 /33

The Sum-Product Algorithm (2/3)

o Consider the node representing the factor g(xi, ..., x,) of a global
function f(x1,...,Xm)
ux1->g(X1

)
x1 I__ Xi
o [—
Hxn_>g(xn) T IJ'gf>xi(Xi)

@ The message passed along the edge corresponding to x; is:

:Ug—%‘(xi) = Zg(xl? ce ey Xn) H MXA—>g(X)\)

~Xi AFEiD

which is the product of g and all messages towards g along all edges
except x;, summed over all the variables except x;.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 9 /33

The Sum-Product Algorithm (3/3)

® The messages [ix,.g(X;) are either the values of x;, if we have a half
edge, or the message coming from the node at the other end of the
edge.

@ The marginal of the global function with respect to x;, is given by the
product of all messages exchanged by the SPA over the edge
corresponding to x;:

in(X,') = H:ugj—wf(xi)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 10 / 33

The Sum-Product Algorithm (Example)

@ Consider a burglar alarm which is sensitive not only to burglary, but
also to earthquakes. There are 3 binary variables: a, b, e (for alarm,
burglary, and earthquake respectively). A value of 1 indicates that the
corresponding event has occured. We want to infer the probability of
the two possible causes, given that the the alarm went off:

p(bla=1) and p(ela=1)

@ These can be computed by marginalizing p(b, ela = 1)

@ Asumming that b, e are independent, we have:

p(a=1lb.e)p(b)p(e)

p(a=1) p(a = 1|b,e)p(b)p(e)

(b,ela=1) =

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 11 /33

The Sum-Product Algorithm (Example)

@ So, we have factored the function we want to marginalize and the
corresponding factor graph is:

b e
fh f f

where

fo(b) = p(b) fe(e) = p(e) f(be) = pla=1lbe)
@ We are given the following data:

,(0) =0.9 f,(1)=0.1
f(0) =09 f(1)=0.1
and
f(0,0) = 0.001 f(1,0) =0.368
f(0,1) =0.135 f(1,1) = 0.607

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 12 /33

The Sum-Product Algorithm (Example)

@ The messages from nodes f;, and f, to node f will be:

,U,fb_,b(b) == (0.9, 0.1)
115 —e(€) = (0.9,0.1)

@ Once node f has received the above messages, it can compute the
messages for nodes f, and fe:

pis(b) = 3 F(beurele)

= (0.001 x 0.9+0.135 x 0.1, 0.368 x 0.9+ 0.607 x 0.1)
e=0 e=1 e=0 e=1

bZO b=1
= (0.0144,0.3919)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 13 /33

The Sum-Product Algorithm (Example)

@ Similarly, we can compute pr_(e) = (0.0377,0.1822)

@ The marginals sought can now be written as:
p(bla=1) o pf,—p(b) - pr—p(b) = (0.01296,0.03919)
and
plela=1) x uf—e(e) - pr—e(e) = (0.03393,0.01822)

@ After scaling of these vectors so the sum of their elements is 1, we
have:
p(bla=1) = (0.249,0.751)

p(ela =1) = (0.651,0.349)

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 14 / 33

Codes on Graphs

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 15 /33

The lverson Function

@ Let P denote a proposition that may be either true or false.

@ The lverson function is defined as:

1, P is true
[P]= { 0, P s false

@ If we have n propositions, we have the factorization:

[P1 and Py and ... and P,] = [P1][P2] . .. [Pn]

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 16 / 33

Graph of a Code (1/4)

@ Consider the parity-check matrix:

H=

O O =
O = O
= O O
[«
=~ O
==
_ O

of a (7,4,3) Hamming code.

@ All codewords satisfy the following parity checks:

x1+x3+x6+x7=0
X2+ X4+ x5 +x56 =0
x3+x5+x+x7=0

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 17 / 33

Graph of a Code (2/4)

@ Using the lverson function, we can express membership of a codeword
x in the code as follows:

[x € C] = [HxT = 0]
@ In our case, the above function can be factored as follows:
[x € C] = [x1+xa+x6+x7 = 0][x2+xa+x5+x6 = 0][x3+Xx5+X6+x7 = 0]

@ A Tanner graph is a graphical representation of a linear block code
corresponding to the set of parity checks that specify the code.

@ Each symbol (variable node) is represented by a filled circle (e), and
every parity check by a check node (&).

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 18 / 33

Graph of a Code (3/4)

@ Tanner graphs are bipartite, meaning that variable nodes can only be

connected to check nodes, and vice versa.

@ A Tanner graph may contain cycles, but since they are bipartite, their

minimum girth is 4.

@ For the Hamming code we defined above, the corresponding Tanner

graph will be:

Telecommunications Laboratory (TUC)

x1
x2
x3
x4
x5
X6

x7

Codes on Graphs

November 27th, 2008

19 /33

Graph of a Code (4/4)

@ Since a given code can be represented by several parity-check
matrices, the same code can be represented by several Tanner graphs.
Some representations may have cycles while others may be cycle-free.

@ Each variable node (e) corresponds to one bit of the codeword, i.e. to
one column of H

@ Each check node (@) corresponds to one parity check equation, i.e.
to one row of H

@ A connection between variable node j and check node i only exists if
H; =1
ij

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 20 / 33

Decoding on a Graph: Using the Sum-Product Algorithm

(1/2)

o Consider the symbol-MAP decoding problem stated earlier:

p(x]y) oc p(y|x)p(x)

@ For a stationary memoryless channel, we have:

pylx) = Hp yilxi)

@ Using the lverson function and assuming that the a priori distribution
of codewords is uniform, we can write:

1
p(x) =[x € C]@

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 21 /33

Decoding on a Graph: Using the Sum-Product Algorithm

(2/2)

@ From the above we get that:

p(xly) o [x € C] T] p(ilx)
i=1

which is in a factored form, so it can be represented by a normal
factor graph.

@ To compute p(x;|y;) we can marginalize the above function using the
sum-product algorithm on the graph.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 22 /33

The Sum-Product Algorithm on Graphs with Cycles

@ On a cycle-free graph, the SPA yields the exact APP distribution of
the code word symbols in a finite number of steps.

@ Codes whose Tanner graphs are cycle-free have a rather poor
performance.

@ On a graph with cycles, the algorithm may not converge, or it may
converge to a wrong result.

@ If short cycles are avoided, in most practical cases, the algorithm does
converge and yields the correct answer.

@ For LDPC codes it is proved that as n grows asymptotically large, the
assumption of a graph without cycles holds.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 23 /33

LDPC Codes

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008

Low-Density Parity-Check Codes (1/2)

@ LDPC codes are long linear block codes. As the name implies, their
parity-check matrix has a low density of non-zero entries.

@ Specifically, for a regular LDPC code, H contains a small number of
1s in each column, denoted w,, and a small number of 1s in each
row, denoted w,.

@ For irregular LDPC codes, the values of w, and w, are not constant.

@ Since each column corresponds to one bit of the codeword, w, tells us
in how many parity check equations that bit participates.

@ Accordingly, since each row corresponds to a parity check equation,
w, tells us how many bits participate in each equation.

@ If the block length is n, we say that H characterizes a (n, wc, w;)
LDPC code.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 25 /33

Low-Density Parity-Check Codes (2/2)

@ If there are m parity check equations, each involving w, bits, and each
of the n coded symbols participates in w, equations, it must hold
that:

nwe
nWe = mw, <& m =

Wy
where m is the number of rows in H.
@ If H is full rank, then the rate of the code is:

n—m We
—1- =<
n w,

which yields the constraint w, < w,

@ The actual rate of the code might be higher than the above, if the
parity checks are not independent. We call p* £ 1 — w./w, the
design rate of the code.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 26 / 33

Desirable Properties

@ The Tanner graph corresponding to the code should have a large
girth, for good convergence properties of the iterative decoding
algorithm.

@ Regularity of the code eases implementation.

@ For good performance at high SNR on the AWGN channel, the
minimum Hamming distance must be large. LDPC codes are known
to achieve a large value of dy_.

@ The techniques for the design of parity-check matrices of LDPC codes
can be classified under two main categories:

@ Random constructions.
@ Algebraic constructions.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 27 /33

Random Constructions (1/2)

@ They are based on generating the parity-check matrix randomly filled
with Os and 1s, while satisfying some constraints.

@ After selecting values for the parameters n, p*, w,., we can compute
the value of w,.

@ For a regular code, row and column weights of H must be exactly
w, and w, respectively.

@ Additional constraints can be included, e.g. the number of 1s in
common between any two columns (or rows) should not exceed one,
in order to avoid length-4 cycles.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 28 / 33

Random Constructions (2/2)

@ A method for the random construction of H was developed by

Gallager:
@ The parity-check matrix H of a regular (n, w., w,) LDPC code has
the form:
H;
H
H=|
H,,

@ H; has n columns and n/w, rows, contains a single 1 in each column,
and contains 1s in its i-th row from column (i — 1)w, 4+ 1 to column
IW,.

@ All other matrices are obtained by randomly permuting the columns
of H1.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 29 /33

Random Constructions (Example)

@ For example, for p* =1/2, we =2 and n = 12, we have:
pr=1-— We =w, =4
r

@ Using the method mentioned above, we have:
1 11 1000O0O0O0O00O0
H;=|1000O011110000
0 000OO0OO0OO0OT1TT1T11

@ The column weight of Hj is 1, the row weight is w, and the matrix is
n/wy X n.

@ We will need w, — 1 = 1 permutation of this matrix to create H.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 30 /33

Random Constructions (Example)

@ One possible permutation is:

100100100100
H=| 010010010010
001 0010O01O0O0T1

@ So, the final matrix will be:

o
o
o
o
—
=
=
—
o
o
o
o

o
=
o
—
o
o
—
o
o
=
o

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 31/33

Algebraic Constructions (1/2)

@ Algebraic LDPC codes are more easily decodeable than random codes.

@ A simple algebraic construction works as follows: choose
p > (we — 1)(w, — 1) and consider the p X p matrix obtained from
the identity matrix 1, by cyclically shifting its rows by one position to

the right:
01 00 0]
0010 0
J=1: 0o
0 00O0...1
1 0 00 0]

@ The A-th power of J is obtained from I, by cyclically shifting its rows
by (A mod p) positions to the right.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 32 /33

Algebraic Constructions (2/2)

@ Construct the matrix:

30)0 J° J°]

Qo J2 Jui—t
H= [J0)2 »ooo Jwn

J.O JW(_.-—]. J2(VV.C—1) o J(Wc—ll)(wr—l)

where J0 = I

@ This matrix has w.p rows and w,p columns. The number of 1s in
each row and column is exactly w, and w, respectively.

@ It can be proven that no length-4 cycles are present.

Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 33 /33

	Marginalization of a Function
	Factor Graphs
	The Sum-Product Algorithm

	Codes on Graphs
	The Iverson Function
	Graph of a Code
	Decoding on a Graph: Using the Sum-Product Algorithm

	LDPC Codes
	Desirable Properties
	Construction of LDPC Codes

