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Efficient Computation of the Binary Vector That
Maximizes a Rank-Deficient Quadratic Form
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Abstract—The maximization of a full-rank quadratic form over
the binary alphabet can be performed through exponential-com-
plexity exhaustive search. However, if the rank of the form is not a
function of the problem size, then it can be maximized in polyno-
mial time. By introducing auxiliary spherical coordinates, we show
that the rank-deficient quadratic-form maximization problem is
converted into a double maximization of a linear form over a multi-
dimensional continuous set, the multidimensional set is partitioned
into a polynomial-size set of regions which are associated with dis-
tinct candidate binary vectors, and the optimal binary vector be-
longs to the polynomial-size set of candidate vectors. Thus, the size
of the candidate set is reduced from exponential to polynomial. We
also develop an algorithm that constructs the polynomial-size can-
didate set in polynomial time and show that it is fully paralleliz-
able and rank-scalable. Finally, we demonstrate the efficiency of
the proposed algorithm in the context of adaptive spreading code
design.

Index Terms—Binary sequences, code-division multiple-access
(CDMA), code-division multiplexing, maximization of quadratic
forms, optimization, signal waveform design.

I. INTRODUCTION

T HE maximization of a positive (semi)definite quadratic
form that consists of a matrix parameter and a vector ar-

gument is a common design problem in communication systems
that appears at both the transmitter (signal design) and the re-
ceiver (signal processing) end. The complexity of such an opti-
mization is determined by the characteristics of the matrix pa-
rameter (whose rank determines the rank of the quadratic form)
as well as the alphabet of the vector argument. For example,
if the alphabet of the vector argument is unconstrained, then
the quadratic form is maximized by the maximum-eigenvalue
eigenvector of the matrix parameter. However, maximization of
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a full-rank quadratic form over the binary1 alphabet is NP-hard
in both a worst-case sense [1] and an average sense [2].

Interestingly, it has been recently proven that the maximiza-
tion of a quadratic form with a binary vector argument is no
longer NP-hard if the rank of the form is not a function of the
problem size [3]–[5].2 Specifically, based on results from com-
putational geometry (CG), it was identified in [5] that the max-
imization of any rank-deficient quadratic form over the binary
field is equivalent to rank-deficient maximization over the
field [3]. The latter can be attained in polynomial time through a
variety of CG algorithms, such as the incremental algorithm for
cell enumeration in arrangements [8], [9] and the reverse search
[4], [10]. It should be noted that although the incremental algo-
rithm in [8], [9] is optimal in terms of speed, it is not paralleliz-
able and may be very complicated to implement due to its large
memory requirement. On the other hand, the highly paralleliz-
able reverse search [4], [10] is speed and memory efficient and,
as a result, has been utilized for the maximization of a rank-de-
ficient quadratic form over the field [3].3

From a different perspective, in [6], [7] the authors present
an algorithm which computes with log-linear complexity the bi-
nary vector that maximizes a rank-2 quadratic form. In [13], the
same idea is extended to the maximization of a rank-3 quadratic
form, resulting in an algorithm that computes the optimal bi-
nary vector with log-quadratic complexity. It does so by uti-
lizing auxiliary spherical coordinates and partitioning the three-
dimensional space into a quadratic-size set of regions, where
each region corresponds to a distinct binary vector. The binary
vector that maximizes the rank-3 quadratic form is shown to
belong to the quadratic-size set of candidate vectors. Thus, the
method in [13] reduces the size of the candidate vector set from
exponential to quadratic.

In the present work, we generalize the approach in [6], [7],
[13] and build an efficient algorithm for the computation of the
binary vector that maximizes a rank-deficient quadratic form.
Specifically, we introduce as many auxiliary spherical coordi-
nates as the rank of the problem reduced by one and partition

1In this work, a vector is called binary if and only if each element of it equals
�� or��. Contrarily, if each element of it equals 0 or 1, then the vector is said
to belong to the ��� field.

2A straightforward example is the rank-1 quadratic form maximization
problem whose optimal solution is the hard-limiter output when applied to the
maximum-eigenvalue eigenvector of the matrix parameter (i.e., the norm-con-
strained, alphabet-unconstrained quadratic form maximization solution) [6],
[7].

3The reverse-search-based maximization over the ��� field [3] has been
used for maximum-likelihood (ML) block noncoherent detection of binary and
quadrature phase-shift keying signals [11] and near-ML multiuser detection [5]
while the incremental algorithm [8] has been identified as a tool for ML block
noncoherent detection of� -ary phase-shift keying (MPSK) signals [12].
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the multidimensional space into a polynomial-size set of re-
gions. Each region is associated with a distinct binary vector.
The set of binary vectors that we obtain has the same size as
the set produced by the reverse search [4]. However, in the
proposed approach the set is constructed in a completely dif-
ferent manner resulting in time and memory savings. We prove
that the proposed algorithm is fully parallelizable and rank-scal-
able. Finally, due to its nature, it can be appropriately modi-
fied to serve (not, necessarily, constant-modulus) complex-do-
main optimization problems such as, for example, ML nonco-
herent single-input multiple-output (SIMO) detection of arbi-
trary-order MPSK [14], ML noncoherent pulse-amplitude mod-
ulation (PAM) or quadrature amplitude modulation (QAM) de-
tection, and sparse rank-deficient variance maximization (in the
context of sparse principal component analysis). Work on the
latter two subjects is currently in progress.

The rest of the paper is organized as follows. Section II is de-
voted to the problem formulation. The proposed method for the
maximization of a rank-deficient quadratic form with a binary
vector is described in Section III. The performance of the pro-
posed algorithm is tested through simulations in Section IV. A
few concluding remarks are drawn in Section V.

Notation: Vectors and matrices are denoted by small and
capital, respectively, bold letters, that is, and . Their ele-
ments are denoted as and , respectively. follows
a MATLAB-like notation that denotes the submatrix of that
consists of the th up to th rows and th up to th columns of
it. When the size of the matrix matters we denote it
by ; otherwise, we denote it by .

II. PROBLEM STATEMENT

We consider the quadratic form

(1)

where is a symmetric matrix and
is a binary vector argument. Since is symmetric, it can be
decomposed as

(2)

where and are its th eigenvalue and eigenvector, respec-
tively.

We are interested in computing the binary vector that maxi-
mizes the quadratic form

(3)

Without loss of generality (w.l.o.g.) we assume that .
Indeed, if , then can be substituted by so
that the quadratic forms
and are maximized by the same binary vector and the
minimum eigenvalue of equals zero. Therefore, in the
following, w.l.o.g. is assumed positive semidefinite with rank

, i.e.,

. Furthermore, since , we define the
weighted principal component

(4)

and the corresponding matrix

(5)

such that and

(6)

Notice that is full-rank and matrices and have the same
rank .

If , then the computation of is NP-hard [1],
[2] and can be implemented by exhaustive search among all ele-
ments of with complexity since ,
an approach that becomes intractable even for moderate values
of .4 However, if is not a function of , then lower-com-
plexity solutions are available for the maximization problem
in (6). For example, if , i.e., , then
in (6) can be derived by inspection5 and is given by

where denotes the vector sign operation.6 If,
on the other hand, (hence, has size ), then it
has been shown that there exists a set
which has cardinality and is constructed
with complexity [6], [7] such that can be ef-
ficiently computed by numerical comparison of among
the elements of . Therefore, maximization of a rank-2
quadratic form with a binary argument is efficiently
achieved with log-linear complexity.

Special emphasis for the case was given recently
in [13] where an efficient algorithm for the computation of

was developed. The algorithm in [13] utilizes auxiliary
spherical coordinates and partitions the three-dimensional
space into a quadratic-size set of regions. Each region cor-
responds to a distinct binary vector and the set
that contains all binary vectors associated with regions has
cardinality , is constructed
with complexity , and contains the optimal vector

in (6).
From a different perspective, several works in the area of

computational geometry have treated the equivalent problem of
maximization of a rank- quadratic form over the
field, i.e., when is a matrix of rank and .
They do so by identifying a subset of that contains

4In fact, since opposite arguments � and �� result in the same metric
� �� � ���� �����, we can ignore half of the elements of ���� and
reduce the complexity of the quadratic form maximization to ��� � which
is still intractable.

5If � � �, then w.l.o.g. we assume that � �
�
� � has only nonzero

elements, i.e., � �� �� � � �� �� � � � � � . Indeed, if there exists an � �
����� � � � � �� such that � � �, then neither � � �� or � � �� have
an effect on� � in (6), implying that we can ignore the corresponding element
� , assign an arbitrary value to � � ��, and reduce the size of the original
problem from � to � � �.

6For any � � with � �� �� � � �� �� � � � � ��� � 	
���� is an � 	 �

vector with � �
��� � 	 ��

�� � 
 ��
� � �� �� � � � � � .
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vectors among which one is optimal. The subset
of interest is constructed by the incremental algorithm [8], [9]
or the reverse search [3], [4], [10]. The incremental algorithm
[8], [9] is theoretically faster but very complicated to implement
due to its large memory requirement while the reverse search is
simpler to implement and constructs the set of
candidate vectors with complexity where
LP denotes the time to solve a linear programming (LP)
optimization problem with inequalities and variables [3],
[4], [10].

In the next section, we generalize the approach of [6], [7],
[13] to treat the problem of quadratic-form maximization in
(6) for any . Specifically, we introduce
auxiliary spherical coordinates and show that there exists a set

which has cardinality
, can be computed in polynomial time, and con-

tains the optimal vector in (6). We also develop an al-
gorithm that constructs with computational com-
plexity and show that it is fully parallelizable and rank-
scalable.

III. EFFICIENT MAXIMIZATION OF A RANK-DEFICIENT

QUADRATIC FORM WITH A BINARY VECTOR ARGUMENT

A. Theoretic Developments

Since , our optimization problem (6)
becomes

(7)

We recall that is a full-rank matrix, .
W.l.o.g. we assume that each row of has at least one nonzero
element, i.e., . Indeed, if there
exists an such that , then
neither nor have an effect on in
(7), implying that we can ignore the corresponding row of ,
assign an arbitrary value to , and reduce the size of
the original problem from to . In addition, w.l.o.g.
we assume that , because for any

there exists an orthogonal matrix such
that and the matrix contains
no zero in its first column, i.e., ,
as the following proposition states. The proof is provided in the
Appendix.

Proposition 1: For any matrix there exists an or-
thogonal matrix such that the matrix does not
contain any zero in its first column.

To develop an efficient method for the maximiza-
tion in (7), we introduce the spherical coordinates

and define the spherical
coordinate vector

(8)

and the hyperpolar vector

...
(9)

A critical equality for our subsequent developments is

(10)

which results from Cauchy–Schwartz Inequality, since for any

(11)

with equality if and only if are the spherical co-
ordinates of . We interchange the maximizations in (10) and
obtain the equivalent problem

(12)

For a given point , the maxi-
mizing argument of each term of the sum in (12) depends only
on the corresponding row of and is determined by

(13)

Then, according to (12), the optimal vector in (7) is met
if we scan the entire set and collect the
binary vector

...
(14)

for every point . However, as
it is explained later on in this section, we may ignore all points in

which result in an ambiguous decision7

and restrict our search to

(15)

7Point ��� results in an ambiguous decision if � ����� � � �
for some � � �� �� � � � � � .
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Then, for the given matrix , each point
is mapped to a candidate binary vector

...

(16)

and the optimal vector in (7) belongs to
.

We note that
for any real matrix

and . Since opposite binary vectors
and result in the same metric value in (7), we ignore the
values of in and rewrite the optimization
problem in (12) as

(17)

Finally, we collect all candidate binary vectors into set

(18)

and observe that , i.e.,

(19)

In the following, we (i) show that
and (ii) develop an algorithm for the construction of
with complexity .

We begin by observing that the decision in (13) determines a
hypersurface that partitions the -dimensional hypercube

into two regions; one corresponds to and
the other corresponds to . The following proposition
presents the details of such a partition. The proof is provided in
the Appendix.

Proposition 2: Let , and
. Then, the

decision rule is equivalent
to (20), shown at the bottom of the page.

As seen in Proposition 2, for any with ,

the function is equivalent to
and determines a hypersurface which

partitions into two regions that correspond to the
two opposite values . As a result, the

matrix is associated with hypersurfaces
that partition the hy-

percube into cells such that
if , and each

cell corresponds to a distinct in the sense
that for any and

if . The excluded points
result in ambiguous

decisions, since for such points for one
or more coordinates . However, for every
such a point we may assign a candidate binary vector which is
affiliated with a neighboring cell without losing optimality in
the original problem in (7).

To illustrate such a partition, we set and ,
generate a rank-3 matrix with ,
and plot in Fig. 1(a) the curve

that originates from the first
row of . In Fig. 1(b) and 1(c), we add the curves
that originate from the second and third, respectively, rows
of . We generalize in Fig. 1(d) which includes all
eight curves of the form

. We observe
that the two-dimensional set is partitioned into
regions (cells); each cell corresponds to a distinct binary
vector according to (20). We repeat our example for ,
generate a rank-4 matrix , and plot in Fig. 2 the four

surfaces that correspond to

. Again, if we consider all eight surfaces, then the 3-D
cube is partitioned into regions (cells) and distinct
binary vectors are associated with each cell according to (20).8

Our objective in the sequel is to efficiently identify these can-
didate binary vectors, since one of them is the optimal binary
vector in (7).

Several properties of the resulting partition that are very im-
portant for our subsequent developments are presented in the
following proposition. The proof is provided in the Appendix.

8For visualization purposes, we do not plot the complete partition.

(20)
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Fig. 1. Partition of �� � � into cells.

Proposition 3: Let be a rank- matrix and
. The following hold true.

a) Each subset of
that consists of hypersurfaces has either a
single intersection or uncountably many intersections in

.
b) For any :

i) .
ii)

.
iii)

.
iv)

.
v)

.

Let denote
the subset of indices that correspond to hyper-
surfaces and

be the vector of spher-
ical coordinates of their intersection. If
is uniquely determined according to Proposition 3, Part
(a), then it “leads” a cell, say , associ-
ated with a distinct binary vector in the
sense that for
all and

. For example,
in the partition of presented in Fig. 1, we observe
that every pair of curves intersect once and each intersection
determines a cell that lies “above” it. Each cell is associated
with a distinct binary vector. We collect all such vectors into

(21)

and observe that and
.9 In other words, contains binary vec-

tors; each vector is associated with a cell in that
starts, with respect to variable , from a single point which
constitutes the intersection of the corresponding hyper-
surfaces.

We also note that there exist cells that are not associated with
such a vertex and contain uncountably many points of the form

. However, according to Proposition 3, Part
(b.ii), every such a cell can be ignored since there exists another
cell that contains points of the form , is
associated with the opposite vector, and is “led” by a vertex-
intersection (thus, it belongs to ) unless the initial cell
contains a point with , as Proposition 3, Part (b. )
mentions. For example, in Fig. 1 such cells are identified at the
bottom of the plane, that is, for . We observe that the
vectors that are associated with these cells are opposite to the
vectors that are associated with the cells that are identified at

9In general, ���� �� � � � with equality if and only if the � �
intersections of hypersurfaces are distinct. In the sequel, we consider the most
computationally demanding case of distinct intersections.
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Fig. 2. Partition of �� � � into cells.

the top of the plane. Therefore, the former ones can be ignored.
Similarly, in Fig. 2 the binary vectors that are determined for

are opposite to the vectors determined for ;
hence, the former ones can again be ignored.

Finally, if for a particular cell, then this cell
“exists” for any , implying that we can ig-
nore (or, say, set it to an arbitrary value ), set
to , and consider cells defined on

. In Fig. 2, such cells are identified for and
. In addition, due to Proposition 3, Part (b.iv), the

cells that are defined when are associated with
vectors which are opposite to the vectors that are associated
with cells defined when . Therefore, we can ig-
nore the case , set to , ignore ,
and, according to Proposition 3, Part (b.iii), identify the cells
that are determined by the reduced-size matrix over
the hypercube . As an example, in Fig. 2 we set

and examine the cells that appear on the leftmost
vertical edge of the cube.

Hence, and, by
induction,

(22)

which implies that

(23)

since with
and with

[6], [7]. As a result, the
cardinality of is

(24)

To summarize the developments in this subsection, we have
utilized auxiliary spherical coordinates, partitioned the
hypercube into cells that are associ-
ated with distinct binary vectors which constitute

, and proved that . Therefore, the ini-
tial problem in (7) has been converted into numerical maximiza-
tion of among all vectors . Such an op-
timization costs comparisons
upon construction of . An efficient algorithm for the
construction of is developed in the next subsection.

B. Algorithmic Developments

Let be a real matrix that satisfies the assumptions
made in the beginning of Section III. According to (23),
the construction of reduces to the construction
of if is even
and if is odd
which, as seen in (21), can be computed independently and
in parallel. Recall that , and
can be obtained with complexity , and

, respectively [6], [7], [13]. Therefore, it remains
to describe a way to construct for any .
Interestingly, from (21), we observe that the construction of

can also be fully parallelized since the candidate
vector can be computed independently for
each . As a result, we only need to
present a method for the computation of

.
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We consider a certain value of and a
certain set of indices such that the
hypersurfaces inter-
sect at a single point . Cell
that is “led” by is associated with the binary
vector [see, for example, the highlighted cell
in Fig. 1(d)]. To identify , we consider its
elements separately and observe the following.

i) For any , the corresponding
element of maintains its value at

; hence, it is determined by

(25)

ii) For any , say , the corresponding
element of cannot be determined at

. However, it maintains its value at the
intersection of the remaining hypersurfaces

;
hence, it is determined by

(26)

Equations (25) and (26) suggest the following construction
of . If the intersections of hyper-
surfaces are distinct, then only the hypersurfaces

pass through the
“leading” vertex of cell .
Therefore, if , then the corresponding
hypersurface does not pass through ,
implying that the polarity of with respect to

is the same as the polarity of any point of the cell
of interest with respect to the same hypersur-
face. As a result, the sign of the corresponding binary element

is well determined at the “leading” vertex,
as (25) states. For example, in Fig. 1, is well
determined at through (25) and maintains its
value in the associated cell which is high-
lighted in Fig. 1(d) for illustration purposes. On the other hand,
if , say , then hypersurface passes
through leading to an ambiguous decision

. For example, in Fig. 1,
curves and pass through
leading to ambiguous decisions of
and . In such a case, ambiguity is
resolved if we exclude and consider the intersection
of the remaining hypersurfaces at . Indeed,
the polarity of any point of the cell of interest
with respect to is the same as the polarity of

with respect to the same hypersur-
face. Therefore, the sign of the corresponding binary element

is well determined through (26). In Fig. 1,
the ambiguity with respect to at intersection

is resolved through (26) at
and the ambiguity with respect to is resolved
through (26) at .

Similarly, in Fig. 2, is well deter-
mined at through (25) and maintains
its value in the associated cell . Con-
versely, surfaces , and pass
through leading to ambiguous decisions of

,
and . Ambiguity is resolved
through (26) at ,
and , respectively.

Finally, if there exist common intersections, then for the inter-
sections that belong to more than hypersurfaces we follow
the above procedure of setting to resolve the ambi-
guity with respect to the index that does not belong to the set of

indices that we examine.
It remains to describe how the vector of spherical co-

ordinates is computed efficiently. Re-
call that represents the intersection of

, i.e., the solution
of

(27)

According to the proof of Proposition 3, Part (a), for a
full-rank real matrix, (27) has a unique solution

which consists of the spherical
coordinates of the zero right singular vector of .
Therefore, to obtain we just need to compute
the zero right singular vector of and calculate its
spherical coordinates.

The complete algorithm for the construction of is
provided in Table I. The input is matrix . Function com-
pute candidates(V) first computes and con-
tinues by calling itself with a reduced-size matrix
as (22) indicates. The function output is set . After
consecutive rank reductions, it ends up with or .
Then, the rank-1-optimal or rank-2-optimal solution is obtained
according to the work in [6], [7].

The algorithm visits independently the
intersections and computes the candidate binary

vector associated with each intersection. We notice that the
algorithm avoids the calculation of the Cartesian coordinates
of each intersection. Function find intersection(V)
calculates the Cartesian coordinates of the intersection of
the hypersurfaces that correspond to the rows of its input
within a sign ambiguity by the singular value decomposi-
tion, according to the proof of Proposition 3, Part (a). Then,
the conversion into spherical coordinates is only necessary
to resolve the sign ambiguity and is performed by function

. The calculation of the zero right singular
vector of costs , the conversion into spherical
coordinates costs , and the operation costs

for any . Since is computed for each
, the cost of the algorithm for each combination

is
. Therefore, the overall complexity of the algorithm

for the computation of with fixed
becomes .
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Finally, we study the characteristics of the proposed algo-
rithm and compare it with the CG-based methods in [3], [4],
[8]–[10]. Our interest is directed towards computational com-
plexity, memory requirement, parallelizability, scalability, and
applicability.

a) Computational Complexity: As described above, the
overall complexity of the proposed algorithm is when a
rank- order- problem is considered. In addition, further im-
provements in terms of complexity are allowed. For example,
when the complexity becomes instead of

[6], [7] while when it becomes
instead of [13]. We recall that the complexity of the re-
verse search [4], [10] is LP .

b) Memory Requirement: We recall that the computation
of the candidate vectors of is performed indepen-
dently from cell to cell, which implies that there is no need to
store the data that have been used for each candidate and we
only have to store in the memory the “best” vector (in terms of
the metric of interest (7)) that has been met. The memory utiliza-
tion of the proposed method is, therefore, reduced, in contrast to
the incremental algorithm in [8], [9] which is very complicated
to implement due to its large memory requirement.

c) Parallelizability: As mentioned above, the
cells are visited independently

of each other so that the candidate vectors of are
computed independently of each other. Hence, the proposed
algorithm is fully parallelizable.

d) Scalability: If the initial problem is of a high rank that
makes the optimization intractable, then matrix in (1) can be
approximated by keeping its strongest principal components.
In such a case, as seen in (23) the proposed method is rank-
scalable. The optimization begins with rank or 2 and
additional principal components are introduced to increase
and, hence, expand until a satisfactory reduced-rank
approximation is reached.

e) Applicability: Whenever the quadratic form under con-
sideration is of (nearly) low rank, we expect that the proposed
method will produce a (nearly) optimal binary vector. In fact,
there might be applications where the quadratic form has ex-
actly a low rank. Such a situation is met in semidefinite relax-
ation (SDR) [15]–[18] where it has been empirically observed
that the returned matrix argument has rank 2 or 3. Since the
Frobenius norm of the difference between the outer product of
a binary vector and the returned matrix is minimized if and only
if a corresponding low-rank quadratic form is maximized over
a binary vector argument, our proposed method can serve as the
rounding step of SDR, as well. Another example is ML nonco-
herent SIMO [11], [12], [14] or space-time block coded mul-
tiple-input multiple-output [19] detection where the rank of the
quadratic form turns out to equal twice the rank of the covari-
ance matrix of the vectorized channel matrix. Finally, as men-
tioned in Section I, the proposed method can be appropriately
modified to serve (not, necessarily, constant-modulus) complex-
domain optimization problems such as ML noncoherent SIMO
detection of arbitrary-order MPSK [14], ML noncoherent PAM
or QAM detection, and sparse rank-deficient variance maxi-
mization.

IV. APPLICATION EXAMPLE

In Section III, we developed an algorithm that computes with
polynomial complexity the binary vector which maximizes a
rank-deficient quadratic form. To illustrate the applicability of
the proposed algorithm and justify the complexity gain it offers,
we consider an example drawn from recent literature on code-
division multiple-access (CDMA) where -to obtain an efficient
approach- the optimization problem is approximated by a rank-
deficient quadratic form maximization.

We consider a synchronous direct-sequence CDMA system
with processing gain where the user of interest with
a normalized binary spreading code transmits
over an additive noise channel in the presence of interfering
users. The received signal vector is

(28)

where is a uniformly distributed bit random variable,
is the collected energy per bit, and

(29)

where , and are the uni-
formly distributed user bit, received energy per bit, and normal-
ized binary spreading code of the th interferer, ,
and represents additive zero-mean channel noise. The total
disturbance vector is zero-mean with positive definite autoco-
variance matrix

(30)

where is the additive noise variance.
For an arbitrary spreading code , the linear

receiver that exhibits maximum signal-to-noise ratio (SNR)
at its output has the form

(31)

and the maximum SNR value is

(32)

Therefore, optimization of the binary code in the maximum
sense is equivalent to maximization of a full-rank

quadratic form with matrix parameter and binary vector
argument , i.e.,

(33)

In our study, we set the received SNR of the user of interest,

, to 10 dB and the received SNRs of the interferers,

, uniformly spaced between 8 and 11
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TABLE I
MATLAB CODE OF THE PROPOSED ALGORITHM

dB. The interfering spreading codes are randomly generated.
We compare the output SNR performance of (i) the optimal bi-
nary spreading code of (33) obtained through exhaustive
search over all possible -bit combinations, (ii) the rank-1-op-
timal binary spreading code obtained by applying the sign
operator on the maximum-eigenvalue eigenvector of the inverse
interference-plus-noise autocovariance matrix [20], [21],
(iii) the rank-2-optimal binary spreading code (which is op-
timal under a rank-2 approximation of ) obtained with com-
plexity by the procedure developed in [6] and [7],
and (iv) the rank- -optimal binary spreading code (which is
optimal under a rank- approximation of ) obtained with
complexity , by the procedure developed in
Section III. For comparison purposes, we evaluate the output
SNR loss, , of , with

respect to the output SNR of the optimal binary spreading code
. The results that we present are averages over 2 000 ran-

domly generated interference signature-set realizations.
In Fig. 3, we plot the output SNR loss of the rank- -op-

timal, , binary spreading codes as a function of
the number of interferers . We are particularly interested in
overloaded systems and vary from 16 to 40 interferers. We
observe that for the proposed rank- -optimal spreading
code exhibits less than .01 dB performance loss which is signif-
icantly lower than the performance loss of the rank-1-optimal
and rank-2-optimal codes (interestingly, all four loss values de-
crease as increases).

In Fig. 4, we plot the probability of global, full-rank, opti-
mality for the rank- -optimal, ,
binary spreading codes as a function of the number of interferers
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Fig. 3. SNR loss of rank-�-optimal, � � �� �� �� �, binary spreading code designs versus number of interferers.

Fig. 4. Probability of full-rank optimality of rank-�-optimal, � � �� �� �� �, binary spreading code designs versus number of interferers.

. We observe that for almost all values of
between 16 and 40 interferers. Therefore, with the proposed

optimization of the binary spreading code under the rank-4 ap-
proximation of , we have significantly increased the proba-
bility that the designed spreading code is full-rank optimal with
only additional computational cost.

V. CONCLUSION

We considered the problem of identifying the binary vector
that maximizes a rank-deficient quadratic form. We introduced
auxiliary spherical coordinates and proved that there exists a
polynomial-size set of candidate binary vectors that is con-
structed in polynomial time and contains the optimal vector.

The size of the set depends strictly on the parameter vector
length and the rank of the quadratic form. When the rank of
the form is constant, the size of the candidate vector set is a
polynomial function of the vector length. We continued by
developing an algorithm that computes the polynomial-size set
of candidate vectors in polynomial time. Detailed examination
of the properties of the proposed method revealed that it is time
and memory efficient, fully parallelizable, and rank-scalable.
Consequently, without loss of optimality, the proposed algo-
rithm serves as an efficient alternative approach to exhaustive
search and computational-geometry inspired methods. In terms
of performance evaluation, we considered the optimization
problem of adaptive design of binary spreading codes and
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showed that under reduced-rank approximation of the corre-
sponding quadratic form the proposed algorithm attains nearly
optimal performance with polynomial complexity.

APPENDIX A
PROOF OF PROPOSITION 1

Let , where and de-
notes the th row of . In addition, let
denote the nullspace of an matrix , i.e.,

(34)

and denote the dimension of a vector space . Since
and ,

it is implied that [22] is a proper subset of .
Therefore, there exists a nonzero vector that does not
belong to ; hence, .

Let ,
be an orthonormal basis for . Then, the
matrix is orthonormal and

.

APPENDIX B
PROOF OF PROPOSITION 2

Since

(35)

the decision rule be-
comes

(36)

Recall that we have assumed w.l.o.g. that . If ,
then (36) becomes

(37)

Otherwise, ; hence, and (36) becomes

(38)

APPENDIX C
PROOF OF PROPOSITION 3, PART (A)

Consider and the hyper-
surfaces that cor-
respond to rows of . Since each hypersurface

is described by the equation
, their intersection(s) will satisfy the

system of equations

...
(39)

The above system is rewritten as .
Therefore, the solution is such that be-
longs to the null space of which is denoted by

and has dimension greater than or equal to
one, since . Let

be the singular value de-
composition of , where and are orthogonal
matrices, , and
w.l.o.g. .

We consider two cases.
i) If , then

, which implies that

or . Since we require

, only one solution is valid and
the spherical coordinate vector we look for is uniquely
determined by the spherical coordinates of or

.
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ii) If , then which
implies that there are uncountably many solutions for

that satisfy the requirement .

APPENDIX D
PROOF OF PROPOSITION 3, PART (B)

i)

ii)

iii)

iv)

v)
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