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provide H, (v) < (1/2)1n(N) for p < (1/2) and one basis set I. INTRODUCTION
that will provide H,(u) > (1/2)In(N) forp > (1/2);

2) an orthogonal basis where all basis functions are such th%tIt is well known that in the single-input/multi-output (SIMO)
Hy(u) = (1/2)ln(N) forall 0 < p < 1. channel setting, which is derived either by oversampling the channel

) ) ) or by using an array of sensors at the receiver, if the subchannels do
Some work in the first method (the over-complete basis) has begty gare common zeros, thenBth-order multichannel equalizer can

performed. Our conjecture is consistent with all known experimental .o perfectly ad/th-order noiseless channel, with> M — 1

results in this area. The reader is advised to examine some of the 18" A case commonly encountered in practice is when/thia-order

sults in our original paper [5] to trace this history. However, until no R :
. . . fue subchannels possess a significant part of orderith m < M,
we had not been able to find a basis such as that suggested in the seco . . ,, . L
and tails of “small” leading and/or trailing impulse response terms [2].

method. With our new knowledge, we have been able construct an Pr- | tati " iderati f 0] tiqate which is th
thonormal basis fo€", for N = K?, with H, 3(u) minimal and mplementation cost considerations force us to investigate which 1s the
smallest possible order that an equalizer should have, in this case, in

H,(u) independent of for all 0 < p < 1 for every basis vectos.
Thus, these basis vectors are optimally localized in the phase plane 8Fff" t0 offer acceptable performance. To our knowledge, there does

do not favor either time or frequency. Consequently, they should wot exist a theoretical answer to this question. Furthermore, especially
well for all kinds of signals. Moreover, the associated transform can Bethe SIMO channel contextotheoretical explanation has been given
implemented at least as fast as the fast Fourier transform of the sdfdhe fact that for some delays, equalization performance appears
length. Details and applications are forthcoming [6]. inherently poor, whereas for some others, it is usually satisfactory [3].
We consider the least-squares (LS) equalization of noiseless SIMO

channels in the cases in which th&th-order true subchannels possess
a significant part of orde and tails of “small” leading and/or trailing
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sors at the receiver. Extension of our results to the single-ipqmutiput
setting, withp > 2, is straighforward. If the true channel orderis,
then the output of thgth subchannet$? for j = 1,2 is given by
2 =M B0 s, whereh! is the impulse response of thith

k=0
Least-Squares Channel Equalization Performance versus subchannel, and, is the input sequence. We denote the impulse re-
Equalization Delay sponse of thgth subchannel fof = 1,2, ash), = BT,
where superscript denotes transpose, and the entire channel param-
Athanasios P. Liavas eter vector is denoted lyy; = [h7 h37]7. By stacking thé L + 1)
most recent samples of each subchannel, we construct the data vector
xp(n) 22 o2 2P o 2™ )T which can be expressed

Abstract—Linear channel equalization has been a successful way to
combat intersymbol interference (ISI) introduced by physical communica- "’_ISX’_/("') = H" (h'\/’)sff'*‘_’w(n)j where the(L + 1) x (L+ M +1)
tion channels at high enough symbol rates. We consider the performance filtering matrix 7, (hxs) is defined as
of least-squares equalizers in the single-input/multi-output (SIMO)
channel context when the true channel is composed of amnth-order A | Fu (h}M)
significant part and tails of “small” leading and/or trailing terms. Using Hr(ha) = Fr(hi))
a perturbation analysis approach, we show that if the diversity of the (1) M )
significant part is sufficiently large with respect to the size of the tails, then ho? e Ry
the lth-order least-squares equalizers, withh > wm — 1, perform well F (hi ) A
for all the delays corresponding to the significant part. On the other hand, LM : )
the performance of the equalizers for the delays corresponding to the tails hg’) N
may be poor.
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Subchannel 1 Subchannel 2

08 06 assume, without loss of generality, theti/||. = 1, and we express
o 05 the fact that the tails are “small” with respect to the significant part as
0.4 z:: Hd’(/"hmz ‘z =em < L. (1)
0z 02 Then, using this partitioning, we decompose our “real-world” problem
T ° 0.1 into an “ideal” problem and a perturbation, which fulfill the following
090000000 | | | Fooe00000 o oooooé(L (Lq’ooomo@o conditions.
-0z s s prs 2 =01, s 5 pp 2 1) The “ideal” problem has a well-defined and informative solution.
2) The perturbation is “small” with respect to the “ideal” quantities.
Fig. 1. Portion of the real part of the subchannelstun2.mat Finally, using invariant subspace perturbation results, we assess the per-
formance of théth-order LS equalizers, attempting to equalize the true
3-rd order LS equalizer 3 6-th order LS equalizer channelh .
© [) ' A
808 8 08 A. Delays Corresponding to the Significant Part
go,s §0-6 We first consider the performance of thie-order LS equalizers for
?im §0.4 the delays corresponding to the significant part of the channel. Our
4 i analysis is performed in three steps.
0.2 02 T In the first step, we assume that our channehis, .., i.e., the
o ‘f’w‘?T o 900099 truncatedmth-order significant part of the true channel.thl,mz
0 oy 0 0 °  ww ° * andh?,_ ., do not share common zeros, théf (b, m,) is of
full-column rank, i.e., ranf;(hn,,m,)) = I + m + 1. Thus,
Fig. 2. Two-norm of residuals ofth-order LS equalizers for delays ] (h,., .n,) is of full-row rank, giving thatR(H] (h,.,.m,)) =
{0,..., 19} for chan2.mat = 3,6). R(Li+m+1), WwhereR(A) denotes the range space of mattixandl,,
denotes the-dimensional identity matrix. This means that the canon-
In the sequel, we assume that we knayriori that the subchannels ical vectorsey, ford = 1,...,71 4+ m + 1, belong to the range space
of h,; are composed of a significant part of oraeiying between po-  of H{ (hiny,m,). Consequently, equation!/ (B, m,)gra = ed

sitionsm andma, i.e.,m = m2> — my, and “small” tails occupying always has a solution, yielding that chanhg!, .., can be equalized
the rest of the positions, and we perform a theoretical analysis of therfectly by ar/th-order equalizer,/ yvitb] > m — 1. The minimum
behavior ofith-order equalizers, with. — 1 <1 < M — 1. By using norm solution is given bg; s = (HY (Mg, ms ) eq.

lth-order equalizers, weannot in general, equalize perfecthy;. The In the second step, we assume that our chanriel,is,,,, i.e., the
best we can do, in the LS sense, is to computdttherder LS equal- appropriately zero-padded version of theh-order significant part of
izersg; s = (HF (hy))*eq ford = 1,....1+ M + 1. It turns out the true channel. It is easy to see that

that their performance is strongly dependent on the choide \bfe il- o
lustrate this point in Figs. 1 and 2. rank (Hi (hml-mz)) =l+m+1 and

In Fig. 1, we plot a portion of the real part of the two sub- {© J T
channels constructed by the oversampled, by a factor of two, R(Hf (hfnl,m2)> - R | P
complex-valued microwave radio channehan2.mat which is
found at http://spib.rice.edu/spib/microwave.html. In Fig. 2, we plot . )
the vector 2-norm of the residuals of thith-order LS equalizers Where Onfﬂ denotes the(n x m) zero matrix. This means
llew — MY (hat)gralla ford = 1,...,20 andl = 3,6. We observe that R(H; (h},, ..,)) contains the canonical vectqred for
that for certain delays, the LS performance is satisfactory, wheréhs= ™1 + 1,...,m2 4 [ + 1. For the corresponding delays,
for delays outside a specific range, it is not. In addition, we obser 1,1 Ca;‘ bg equallﬁzed perfectly by the minimum norm equalizers
that the performance of the sixth-order LS equalizer is satisfactory k¢ = (H{ (hiy iy )) €
more delays than that of the third-order LS equalizer. ~ Finally, in order to study the performance of ttle-order LS equal-
izers that attempt to equalite,, we considef; (h,,) as the result
of the perturbatiortt/ (d;,, ,.,) acting onH{ (h,, ,.,). We denote
. the matrix 2-norm of the perturbation 881> £ ||H{ (dZ,, 1,2
Our “real-world” problem is the assessment of the performance @f order to relatef"1 "2 to the size of the tails, we use the structure

O M—mg,l4+m+1

IIl. LS EQUALIZATION PERFORMANCE VERSUSDELAY

the LS solution of the equatioh; (hu)gi = es form —1 < of H] (d2,, ) and (1) to obtaif|H] (dZ,, mo)llr = VIF1em,
! <M —1landd =1,...,1+ M + 1. From the dimensions of the \yherg|| - || denotes the matrix Frobenious norm. Then, using the ma-

(14 M + 1) x 2(I + 1) matrix 1/ (has) and the range of values of triy 2.norm/Frobenious-norm inequalities [4, p. 57 and 72], we obtain

1, we obtain that rankH; (has)) < 2 (I + 1). This gives us the fact

that out of the(l + M + 1) different canonical vectors corresponding Lem S HH'I{‘(dfnl o)

to the(l + M + 1) different possible delays, at ma4tl + 1) may lie V2 V20 +1) 7 #

into or close the range space®f (ha ). Thus, the greatest number HHT(dfnl,mz) ‘ = VT 1e,,. )

of delays for which we may expect sufficiently good LS equalization, r

with an equalizer of ordef, is 2(1 + 1). Thelth-order LS equalizer leads to a combined channel-equalizer
Toward developing a theoretical analysis of the performance of timepulse response}’;, with ;% € R(H/ (ha)), that is closest, with

lth-order LS equalizers attempting to equallze , we first partition respect to the vector 2-norm, ¢&. In the sequel, we give the condi-

hys, similarly to [7, Egs. (3)—(6)], ahn = hy,, ., + d7, m,, tions under which, even if we constrain our search to a subspace of

whereh;,, .., andd;,, .., denote the appropriatelly zero-padded? (H/ (has)), we can find a vectog; , that is “close” toe,; since

mth-order significant part and tails, respectively; we denote thhe LS squtione,Lﬁ can only do better tha#g, 4, the fact thate; 4

truncatednth-order significant part b¥,., ..., (see [7, Eq. (7)]). We is “close” to eq means that théth-order LS equalizers that attempt

1,
‘ <gmlm2
=™

IA
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to equalizeh;, for the delays corresponding to the significant parpf the channel. For varying termsa .1 (H7 (h7,, ..,)) are not

perform “well.” To this end, we denote bR(H] (has))iyms1 the

orderable, in general; extensive simulations have shown that they are

(I + m + 1)-dimensional subspace ®&(H; (har)) spanned by the reasonably close to each other.

left singular vectors associated with tilet+ m + 1) largest singular

Our results were derived by assuming the knowledge of the true im-

values ofH] (hus). Thus,R(H] (har))itmr1 may be considered to pulse responsh,;. However, since during our analysis we used only

be the perturbed subspace correspondirig té(; (h: iy m))-

the size and not the structure of the perturbai‘rt%(dml my )s OUT re-

In order to proceed, we need a measure of the distance between $wits also hold for the cases in which the impulse response is known
linear subspaced” and). Such a measure, which is commonly ento within anO(e,,,) estimation error, due to, e.g., the use of training.
countered in numerical analysis, is the sine of tleainonical angles Development of analysis by exploiting the structure of the perturbation

which is denoted| sin Z(X, )

2. Itis well known that [5, p. 92]

Pg,Q(«Y,}’) = ||sin L({Y,y)Hz (3)

wherep, 2(X,Y) is the 2gapbetweent and) defined as [5, p. 91]

pg.2(X, ) 2 max{ max & (2,Y), max 6(y,X) 4
reX yey
[[=|l2=1 [lyllz=1
with
6>(.¥) 2 min |z~ |> (5)

remains a very interesting problem.

B. Delays Corresponding to the Tails

In the previous subsection, we saw that under certain conditions,
the (I + m + 1) delays corresponding to the significant part of the
channel lead to sufficiently good equalizationlof; by thelth-order
LS equalizers fof > m — 1. In addition, we saw that the dimensions
of H{ (hu) imply that at mos2(1 +1) delays may lead to sufficiently
good equalization performance. This means that for equalizer beeler
m—1, we should not expect any other delays to lead to sufficiently good
equalization performance. However, fob> m, it is not immediately
clear from our analysis, until now, whether there exist other delays that

The theorem that follows prowdes an upper bound for the distance bgay lead to a sufficiently good performance or not. Thus, a natural

tweenR(H/ (hi,, ,.,)) andR(H, (hat)) i1 -

Theorem 1: Let R(HF (h ml me )) denote the(l + m + 1)-di-
mensional range space 61/ (h},, ,,). Tipmt1(H] (Wi my))
denote the smallest nonzero singular value %f (h7y o)
and R(HI (hM
subspace spanned by the left singular vectors 7of (hus)

(+m+1 denote the(l + m 4+ 1)-dimensional

question arises’Are there any other delays that may lead generically
to sufficiently good LS equalization?”

In order to answer this question, we perform a perturbation analysis
similar to that of the previous subsection. However, now, in our “ideal”
problem, we must consider not only the significant part of the channel
but also certain “small” terms. To justify this, let us assume that we want

associated with its(/ + m + 1) largest smgular values. Let study the performance of thih-order LS solution of the equation

&2 be the matrix 2-norm of the perturbatid, (diny ms)-
01"71 e S U’+7n+1(Hl (hnll,mz))/z then

sin Z < (7‘{, ( " mz)) , R (HF(hM))Herl) H7

my,mg
gm

< _ .
T Olfma1 (Hll (h;’?,177n2)) _ jlml.,mz

Otherwise, the upper bound is equal to 1.
Proof: The theorem follows easily from theg&neralizedsin ¢
theorent of [6]. [ ]
From (3)- (6) and the facts that; € R(H/ (h},, ,.,)) ford =

(6)

HE (ha) )8Lmi+1 = €mit1 with mi < m;. If our “ideal” problem

does not |nvolve some “small” leading terms, for exampl%) and

hfjl, then it isnot possible to have aonzeroterm at the(m7j + 1)st
posmon of its right-hand side. As a result, our “real-world” problem,
which has 1 at thém] + 1)st position of its right-hand side, caot

be a “small,” i.e.O(en ), perturbation of our “ideal” problem.

A possible “ideal” problem is

®)

with h;n1 m, denoting the (appropriately zero padded) part of the true

T z
Hl (hmi,mz) gl,mi+1 = em*l‘+l

my +1,...,my + 1+ 1and|leq|. = 1, we deduce that there is anchannel Iylng between indicea] andms. The first |mpI|cat|on of

€.4 € R(H; (has))i4m+1 such that

;vml N
“1

Ti4+m+1 (HT ( my, mz)) -

Using the fact that the LS solutimfd can only do better thaéy 4,
we obtain

||ed - él-,d”Q — emyp,mg ”
<y

Hed - e:LZ\ L S llea — €l

cln)l.jng
S - m mo ° (7)

Ol4+m+1 (H (hrrq,rng)) - gl e
Bound (7) is a worst-case quantity. It means that

a,+m+1(H,T(h;;hm2)) is sufficiently large with respect t6,"!'"2,
then the lth-order LS equalizers that attempt to equalibe;

perform well forall the delays corresponding to the significant par
Assessment of the best-case performance remains a very interesting N

problem, especially in the cases in whietm41(H/ (b, m,))

is “small.” Term a,+,n+1(7-[','( 7 .ms))s Which is the distance in
the matrix 2-norm ofH/ (h m1.mg) from the matrices with rank
(I + m) measures “how well” fulfilled our assumption about rank
(H} (hi,, m,)) or, equivalently, rank(H/ (hym,.m,)) is. Thus, it

this fact is that we must consider equalizers of ofder m™* — 1 with
m" = ma—m7 > m.Thatis, inthis case, we must consider equalizers
longer than the ones considered in the previous subsection. Otherwise,
either a) we cannot equalize perfectly, in genelial; .., or, equiva-
lently, hfnTyw, thus transforming the “ideal” problem defined by (8)
to a “nonideal” one, or b) we may consider some significant impulse
response terms as part of the perturbation, thus decreasing the length of
the “ideal” channel but increasing significantly the size of the perturba-
tion. Both of these alternatives are clearly undesirable for the purposes
of analysis.

The corresponding perturbation it} (dm ms ). Continuing
iimilarly to the analysis of the previous subsectlon we obtain
that the key terms ar€,’1""?, that is, the matrix 2-norm of per-

turbation HZ. (dZ, cmy)y @NA Tp g « 1 (HE (B,e my)), that is,

e smallest nonzero singular value &fZ% (hm .my )+ Defining
emr = ||d7 et . m, |2, We obtain [similarly to (2)]
1 nzﬁ s
€mr < ELVTE KAV 4 Lo, 9)

V2

Furthermore, since the small leading and/or trailing terms are usually of

may be interpreted as a measuredofersity of the significant part the same order of magnitude [2], we usually havedhats ¢,,,~ . Using
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LS perf del
0B Impulse response . performance vs delay \VA SlMULATlONS
g 1 . .
06 g InFig. 3(a), we plot a 10th-order two-channel impulse response com-
gos8 posed of a significant part of order 2, lying between positions= 3
o4 908 andms = 5 and tails. In Fig. 3(b), we plot the 2-norm of the resid-
02 Bos uals of the third-order LS equalizers for the various delays and bound
. g (7) (thick line). We observe that our bound is able to predict the perfor-
§°'2 mance of the LS equalizers for the various delays. For some delays cor-
O T % & s 10 iz wa respondingtothe tails, the 2-norm of the residual of the LS equalizers
@ () is “close” to 1, supporting the arguments of the previous subsection.

Fig.3. (a) Tenth-orderimpulse response. (b) Bound (7) (thick line) and 2-norm V. CONCLUSION

of residuals of the third-order LS equalizers versus delay. We performed a theoretical analysis of the LS equalization perfor-
mance in the cases in which tiéth-order true subchannels possess
. mimg - . anmth-order significant part witle < M and tails of “small” leading
Theorem 1, Wef)btazm that&,. is sufficiently small with respect and/or trailing terms. We showed that if the diversity of the significant
to U’fj’”L*“(H‘* (hm?_'"z))’_ then we expece..;11 1o be glose to part is sufficiently large with respect to the size of the tails, then the
R(Hi-(ha1))tetme 41, implying that the"th-order LS equalizer that _order LS equalizers with> m — 1 perform well for all the delays
attempts to equalizk, for delaym; performs W?”- In the sequel, ¢orresponding to the significant part. On the other hand, the perfor-
we use aresult of [7], WPICh shows that - 1 (Hi+ (hy,x 0, )) DE- mance of the LS equalizers for the delays corresponding to the tails
comes of the order ;. * "%, leading to potentially poor performancemay be poor. In practice, it is usually poor. Our results serve as an ex-
of thel*th-order LS equalizer for delay.}. planation of the behavior of LS equalizers in realistic cases [3].
Theorem 2:1f o ymi1(Hf (hiy, ,m,)) denotes the smallest
nonzero singular value of the ratk+ m + 1) matrix =/ (h},, . ), ACKNOWLEDGMENT
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