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provideHp(u) < (1=2) ln(N) for p < (1=2) and one basis set
that will provideHp(u) > (1=2) ln(N) for p > (1=2);

2) an orthogonal basis where all basis functions are such that
Hp(u) = (1=2) ln(N) for all 0 � p � 1.

Some work in the first method (the over-complete basis) has been
performed. Our conjecture is consistent with all known experimental
results in this area. The reader is advised to examine some of the re-
sults in our original paper [5] to trace this history. However, until now,
we had not been able to find a basis such as that suggested in the second
method. With our new knowledge, we have been able construct an or-
thonormal basis forCCCN , for N = K2, with H1=2(u) minimal and
Hp(u) independent ofp for all 0 � p � 1 for every basis vectoru.
Thus, these basis vectors are optimally localized in the phase plane and
do not favor either time or frequency. Consequently, they should work
well for all kinds of signals. Moreover, the associated transform can be
implemented at least as fast as the fast Fourier transform of the same
length. Details and applications are forthcoming [6].
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Least-Squares Channel Equalization Performance versus
Equalization Delay
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Abstract—Linear channel equalization has been a successful way to
combat intersymbol interference (ISI) introduced by physical communica-
tion channels at high enough symbol rates. We consider the performance
of least-squares equalizers in the single-input/multi-output (SIMO)
channel context when the true channel is composed of an th-order
significant part and tails of “small” leading and/or trailing terms. Using
a perturbation analysis approach, we show that if the diversity of the
significant part is sufficiently large with respect to the size of the tails, then
the th-order least-squares equalizers, with 1, perform well
for all the delays corresponding to the significant part. On the other hand,
the performance of the equalizers for the delays corresponding to the tails
may be poor.
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I. INTRODUCTION

It is well known that in the single-input/multi-output (SIMO)
channel setting, which is derived either by oversampling the channel
or by using an array of sensors at the receiver, if the subchannels do
not share common zeros, then anLth-order multichannel equalizer can
equalize perfectly anM th-order noiseless channel, withL � M � 1
[1]. A case commonly encountered in practice is when theM th-order
true subchannels possess a significant part of orderm, with m < M ,
and tails of “small” leading and/or trailing impulse response terms [2].
Implementation cost considerations force us to investigate which is the
smallest possible order that an equalizer should have, in this case, in
order to offer acceptable performance. To our knowledge, there does
notexist a theoretical answer to this question. Furthermore, especially
in the SIMO channel context,notheoretical explanation has been given
to the fact that for some delays, equalization performance appears
inherently poor, whereas for some others, it is usually satisfactory [3].

We consider the least-squares (LS) equalization of noiseless SIMO
channels in the cases in which theM th-order true subchannels possess
a significant part of orderm and tails of “small” leading and/or trailing
terms. Using a perturbation analysis approach, we show the following.

1) If the diversity of the significant part is sufficiently large with
respect to the size of the tails, then thelth-order LS equalizers,
with l � m � 1, attempting to equalize theM th-order true
channel, offer good performance forall the delays corresponding
to the significant part.

2) The performance of the LS equalizers for the delays corre-
sponding to the tails may be poor.

II. LS SIMO CHANNEL EQUALIZATION

We consider the single-input/two-output channel setting, resulting
either by oversampling the channel by a factor of 2 or by using two sen-
sors at the receiver. Extension of our results to the single-input/p-output
setting, withp > 2, is straighforward. If the true channel order isM ,
then the output of thejth subchannelx(j)n for j = 1; 2 is given by
x
(j)
n = M

k=0 h
(j)
k sn�k, whereh(j)k is the impulse response of thejth

subchannel, andsn is the input sequence. We denote the impulse re-
sponse of thejth subchannel forj = 1; 2, ashjM

�
= [h

(j)
0 � � � h

(j)
M ]T ,

where superscriptT denotes transpose, and the entire channel param-
eter vector is denoted byhM

�
= [h1TM h2TM ]T . By stacking the(L+1)

most recent samples of each subchannel, we construct the data vector
xL(n)

�
= [x

(1)
n � � � x

(1)
n�L x

(2)
n � � � x

(2)
n�L]

T , which can be expressed
asxL(n) = HL(hM)sL+M (n), where the2(L+1)� (L+M + 1)
filtering matrixHL(hM) is defined as

HL(hM)
�
=

FL(h
1
M)

FL(h
2
M)

FL(h
i
M)

�
=

h
(i)
0 � � � � � � h

(i)
M

. . .
. . .

h
(i)
0 � � � � � � h

(i)
M

andsL+M (n)
�
= [sn � � � sn�L�M ]T . It is well established that if

L � M � 1 and subchannelsh1M andh2M do not share common
zeros, thenHL(hM) is of full-column rank, i.e., rank(HL(hM)) =
L+M+1. This means that the canonical vectorsed, that is, the vectors
with 1 at thedth position and zeros elsewhere, ford = 1; . . . ; L +
M + 1, belong to the range space ofHT

L(hM). As a consequence,
the multichannel equalizer defined bygL;d

�
= (HT

L(hM))] ed, where
superscript] denotes the Moore–Penrose generalized inverse, equalizes
perfectly channelhM for delay(d� 1).
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Fig. 1. Portion of the real part of the subchannels ofchan2.mat.

Fig. 2. Two-norm of residuals oflth-order LS equalizers for delays
f0; . . . ; 19g for chan2.mat(l = 3; 6).

In the sequel, we assume that we knowa priori that the subchannels
of hM are composed of a significant part of orderm lying between po-
sitionsm1 andm2, i.e.,m = m2 �m1, and “small” tails occupying
the rest of the positions, and we perform a theoretical analysis of the
behavior oflth-order equalizers, withm� 1 � l < M � 1. By using
lth-order equalizers, wecannot, in general, equalize perfectlyhM . The
best we can do, in the LS sense, is to compute thelth-order LS equal-
izersgl;d = (HT

l (hM))]ed for d = 1; . . . ; l +M + 1. It turns out
that their performance is strongly dependent on the choice ofd. We il-
lustrate this point in Figs. 1 and 2.

In Fig. 1, we plot a portion of the real part of the two sub-
channels constructed by the oversampled, by a factor of two,
complex-valued microwave radio channelchan2.mat, which is
found at http://spib.rice.edu/spib/microwave.html. In Fig. 2, we plot
the vector 2-norm of the residuals of thelth-order LS equalizers
ked � H

T
l (hM)gl;dk2 for d = 1; . . . ; 20 andl = 3; 6. We observe

that for certain delays, the LS performance is satisfactory, whereas
for delays outside a specific range, it is not. In addition, we observe
that the performance of the sixth-order LS equalizer is satisfactory for
more delays than that of the third-order LS equalizer.

III. LS EQUALIZATION PERFORMANCE VERSUSDELAY

Our “real-world” problem is the assessment of the performance of
the LS solution of the equationHT

l (hM)gl;d = ed for m � 1 �
l < M � 1 andd = 1; . . . ; l +M + 1. From the dimensions of the
(l +M + 1)� 2 (l + 1) matrixHT

l (hM) and the range of values of
l, we obtain that rank(HT

l (hM)) � 2 (l + 1). This gives us the fact
that out of the(l+M + 1) different canonical vectors corresponding
to the(l+M + 1) different possible delays, at most2(l+ 1) may lie
into or close the range space ofHT

l (hM). Thus, the greatest number
of delays for which we may expect sufficiently good LS equalization,
with an equalizer of orderl, is 2(l + 1).

Toward developing a theoretical analysis of the performance of the
lth-order LS equalizers attempting to equalizehM , we first partition
hM , similarly to [7, Eqs. (3)–(6)], ashM = hzm ;m + dzm ;m ,
wherehzm ;m and dzm ;m denote the appropriatelly zero-padded
mth-order significant part and tails, respectively; we denote the
truncatedmth-order significant part byhm ;m (see [7, Eq. (7)]). We

assume, without loss of generality, thatkhMk2 = 1, and we express
the fact that the tails are “small” with respect to the significant part as

d
z
m ;m 2

= �m � 1: (1)

Then, using this partitioning, we decompose our “real-world” problem
into an “ideal” problem and a perturbation, which fulfill the following
conditions.

1) The “ideal” problem has a well-defined and informative solution.
2) The perturbation is “small” with respect to the “ideal” quantities.

Finally, using invariant subspace perturbation results, we assess the per-
formance of thelth-order LS equalizers, attempting to equalize the true
channelhM .

A. Delays Corresponding to the Significant Part

We first consider the performance of thelth-order LS equalizers for
the delays corresponding to the significant part of the channel. Our
analysis is performed in three steps.

In the first step, we assume that our channel ishm ;m , i.e., the
truncatedmth-order significant part of the true channel. Ifh1m ;m

and h2m ;m do not share common zeros, thenHl(hm ;m ) is of
full-column rank, i.e., rank(Hl(hm ;m )) = l + m + 1. Thus,
HT
l (hm ;m ) is of full-row rank, giving thatR(HT

l (hm ;m )) =
R(Il+m+1), whereR(A) denotes the range space of matrixA, andIn
denotes then-dimensional identity matrix. This means that the canon-
ical vectorsed, for d = 1; . . . ; l +m + 1, belong to the range space
of HT

l (hm ;m ). Consequently, equationHT
l (hm ;m )gl;d = ed

always has a solution, yielding that channelhm ;m can be equalized
perfectly by anlth-order equalizer, withl � m � 1. The minimum
norm solution is given bygl;d = (HT

l (hm ;m ))]ed.
In the second step, we assume that our channel ishzm ;m , i.e., the

appropriately zero-padded version of themth-order significant part of
the true channel. It is easy to see that

rank HT
l h

z
m ;m = l+m+ 1 and

R HT
l h

z
m ;m = R

Om ;l+m+1

Il+m+1

OM�m ;l+m+1

where On;m denotes the(n � m) zero matrix. This means
that R(HT

l (h
z
m ;m )) contains the canonical vectorsed for

d = m1 + 1; . . . ; m2 + l + 1. For the corresponding delays,
hzm ;m can be equalized perfectly by the minimum norm equalizers
gl;d = (HT

l (h
z
m ;m ))]ed.

Finally, in order to study the performance of thelth-order LS equal-
izers that attempt to equalizehM , we considerHT

l (hM) as the result
of the perturbationHT

l (d
z
m ;m ) acting onHT

l (h
z
m ;m ). We denote

the matrix 2-norm of the perturbation asEm ;m

l

�
= kHT

l (d
z
m ;m )k2.

In order to relateEm ;m

l to the size of the tails, we use the structure
of HT

l (d
z
m ;m ) and (1) to obtainkHT

l (d
z
m ;m )kF =

p
l+ 1 �m,

wherek � kF denotes the matrix Frobenious norm. Then, using the ma-
trix 2-norm/Frobenious-norm inequalities [4, p. 57 and 72], we obtain

1p
2
�m =

1

2(l+ 1)
HT
l (d

z
m ;m )

F
� Em ;m

l

� HT
l (d

z
m ;m )

F
=
p
l+ 1�m: (2)

The lth-order LS equalizer leads to a combined channel-equalizer
impulse responseeLSl;d, with eLSl;d 2 R(HT

l (hM)), that is closest, with
respect to the vector 2-norm, toed. In the sequel, we give the condi-
tions under which, even if we constrain our search to a subspace of
R(HT

l (hM)), we can find a vector~el;d that is “close” toed; since
the LS solutioneLSl;d can only do better than~el;d, the fact that~el;d
is “close” to ed means that thelth-order LS equalizers that attempt
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to equalizehM , for the delays corresponding to the significant part,
perform “well.” To this end, we denote byR(HT

l (hM))l+m+1 the
(l + m + 1)-dimensional subspace ofR(HT

l (hM)) spanned by the
left singular vectors associated with the(l + m + 1) largest singular
values ofHT

l (hM). Thus,R(HT
l (hM))l+m+1 may be considered to

be the perturbed subspace corresponding toR(HT
l (h

z
m ;m )).

In order to proceed, we need a measure of the distance between two
linear subspacesX andY . Such a measure, which is commonly en-
countered in numerical analysis, is the sine of theircanonical angles,
which is denotedk sin 6 (X ;Y)k2. It is well known that [5, p. 92]

�g;2(X ;Y) = k sin 6 (X ;Y)k2 (3)

where�g;2(X ;Y) is the 2-gapbetweenX andY defined as [5, p. 91]

�g;2(X ;Y) �
= max max

x2X
kxk =1

�2(x;Y); max
y2Y

kyk =1

�2(y;X ) (4)

with

�2(x;Y) �
= min

y2Y
kx� yk2: (5)

The theorem that follows provides an upper bound for the distance be-
tweenR(HT

l (h
z
m ;m )) andR(HT

l (hM))l+m+1.
Theorem 1: Let R(HT

l (h
z
m ;m )) denote the(l + m + 1)-di-

mensional range space ofHT
l (h

z
m ;m ); �l+m+1(HT

l (h
z
m ;m ))

denote the smallest nonzero singular value ofHT
l (h

z
m ;m ),

and R(HT
l (hM))l+m+1 denote the(l + m + 1)-dimensional

subspace spanned by the left singular vectors ofHT
l (hM)

associated with its(l + m + 1) largest singular values. Let
Em ;m

l be the matrix 2-norm of the perturbationHT
l (d

z
m ;m ). If

Em ;m

l � �l+m+1(HT
l (h

z
m ;m ))=2, then

sin 6 R HT
l h

z
m ;m ;R HT

l (hM)
l+m+1 2

� Em ;m

l

�l+m+1 HT
l hzm ;m � Em ;m

l

: (6)

Otherwise, the upper bound is equal to 1.
Proof: The theorem follows easily from the “generalizedsin �

theorem” of [6].
From (3)– (6) and the facts thated 2 R(HT

l (h
z
m ;m )) for d =

m1 + 1; . . . ;m2 + l + 1 andkedk2 = 1, we deduce that there is an
~el;d 2 R(HT

l (hM))l+m+1 such that

ked � ~el;dk2 �
Em ;m

l

�l+m+1 HT
l hzm ;m � Em ;m

l

:

Using the fact that the LS solutioneLSl;d can only do better than~el;d,
we obtain

ed � e
LS
l;d

2
� ked � ~el;dk2

� Em ;m

l

�l+m+1 HT
l hzm ;m � Em ;m

l

: (7)

Bound (7) is a worst-case quantity. It means that if
�l+m+1(HT

l (h
z
m ;m )) is sufficiently large with respect toEm ;m

l ,
then the lth-order LS equalizers that attempt to equalizehM
perform well forall the delays corresponding to the significant part.
Assessment of the best-case performance remains a very interesting
problem, especially in the cases in which�l+m+1(HT

l (h
z
m ;m ))

is “small.” Term �l+m+1(HT
l (h

z
m ;m )), which is the distance in

the matrix 2-norm ofHT
l (h

z
m ;m ) from the matrices with rank

(l + m) measures “how well” fulfilled our assumption about rank
(HT

l (h
z
m ;m )) or, equivalently, rank(HT

l (hm ;m )) is. Thus, it
may be interpreted as a measure ofdiversity of the significant part

of the channel. For varyingl, terms�l+m+1(HT
l (h

z
m ;m )) are not

orderable, in general; extensive simulations have shown that they are
reasonably close to each other.

Our results were derived by assuming the knowledge of the true im-
pulse responsehM . However, since during our analysis we used only
the size and not the structure of the perturbationHT

l (d
z
m ;m ), our re-

sults also hold for the cases in which the impulse response is known
to within anO(�m) estimation error, due to, e.g., the use of training.
Development of analysis by exploiting the structure of the perturbation
remains a very interesting problem.

B. Delays Corresponding to the Tails

In the previous subsection, we saw that under certain conditions,
the (l + m + 1) delays corresponding to the significant part of the
channel lead to sufficiently good equalization ofhM by thelth-order
LS equalizers forl � m� 1. In addition, we saw that the dimensions
ofHT

l (hM) imply that at most2(l+1) delays may lead to sufficiently
good equalization performance. This means that for equalizer orderl =
m�1, we should not expect any other delays to lead to sufficiently good
equalization performance. However, forl � m, it is not immediately
clear from our analysis, until now, whether there exist other delays that
may lead to a sufficiently good performance or not. Thus, a natural
question arises:“Are there any other delays that may lead generically
to sufficiently good LS equalization?”

In order to answer this question, we perform a perturbation analysis
similar to that of the previous subsection. However, now, in our “ideal”
problem, we must consider not only the significant part of the channel
but also certain “small” terms. To justify this, let us assume that we want
to study the performance of thelth-order LS solution of the equation
HT
l (hM)gl;m +1 = em +1 with m�

1 < m1. If our “ideal” problem

does not involve some “small” leading terms, for example,h
(1)
m

and

h
(2)
m

, then it isnot possible to have anonzeroterm at the(m�
1 + 1)st

position of its right-hand side. As a result, our “real-world” problem,
which has 1 at the(m�

1 + 1)st position of its right-hand side, cannot
be a “small,” i.e.,O(�m), perturbation of our “ideal” problem.

A possible “ideal” problem is

HT
l h

z
m ;m gl;m +1 = em +1 (8)

with hzm ;m denoting the (appropriately zero padded) part of the true
channel lying between indicesm�

1 andm2. The first implication of
this fact is that we must consider equalizers of orderl� � m��1 with
m� = m2�m�

1 > m. That is, in this case, we must consider equalizers
longer than the ones considered in the previous subsection. Otherwise,
either a) we cannot equalize perfectly, in general,hm ;m or, equiva-
lently, hzm ;m , thus transforming the “ideal” problem defined by (8)
to a “nonideal” one, or b) we may consider some significant impulse
response terms as part of the perturbation, thus decreasing the length of
the “ideal” channel but increasing significantly the size of the perturba-
tion. Both of these alternatives are clearly undesirable for the purposes
of analysis.

The corresponding perturbation isHT
l (dzm ;m ). Continuing

similarly to the analysis of the previous subsection, we obtain
that the key terms areEm ;m

l , that is, the matrix 2-norm of per-
turbation HT

l (dzm ;m ), and �l +m +1(HT
l (hzm ;m )), that is,

the smallest nonzero singular value ofHT
l (hzm ;m ). Defining

�m
�
= kdzm ;m k2, we obtain [similarly to (2)]

1p
2
�m � Em ;m

l � pl� + 1�m : (9)

Furthermore, since the small leading and/or trailing terms are usually of
the same order of magnitude [2], we usually have that�m � �m . Using
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Fig. 3. (a) Tenth-order impulse response. (b) Bound (7) (thick line) and 2-norm
of residuals of the third-order LS equalizers versus delay.

Theorem 1, we obtain that ifE
m ;m

l is sufficiently small with respect
to �l +m +1(H

T
l (h

z
m ;m )), then we expectem +1 to be close to

R(HT
l (hM))l +m +1, implying that thel�th-order LS equalizer that

attempts to equalizehM for delaym�

1 performs well. In the sequel,
we use a result of [7], which shows that�l +m +1(H

T
l (h

z
m ;m )) be-

comes of the order ofE
m ;m

l , leading to potentially poor performance
of the l�th-order LS equalizer for delaym�

1 .
Theorem 2: If �l+m+1(H

T
l (h

z
m ;m )) denotes the smallest

nonzero singular value of the rank-(l+m+ 1) matrixHT
l (h

z
m ;m ),

then

�l+m+1 H
T
l h

z
m ;m

� min h
(1)
m

2

+ h
(2)
m

2

; h
(1)
m

2

+ h
(2)
m

2

: (10)

In this case, (1) and the fact thath(1)
m

andh(2)
m

belong to thetrue
channel tails, i.e.,dzm ;m , give

�l +m +1 H
T
l h

z
m ;m � �m: (11)

Relations (9) and (11) and the fact that�m � �m yield that
�l +m +1(H

T
l (h

z
m ;m )) becomesO(�m), rendering our “ideal”

problem very sensitive to “small” perturbations. In this case, upper
bound (7) becomes (close to) 1. This means that it isnot guaranteed
that there is a vector inR(HT

l (hM))l +m +1 that is close toem +1.

We may ask ifem +1 may be generically close to the subspace
spanned by the left singular vectors ofHT

l (hM) corresponding to
its remaining nonzero singular values. It turns out that this doesnot
happen because a counterexample can be easily constructed. It can
be easily seen that we can null termsh(1)

m
andh(2)

m
of the (m�

1 +

1)-st row ofHT
l (h

z
m ;m ) by adding a small, i.e.,O(�m), perturba-

tion matrix composed of terms�h(1)
m

and�h(2)
m

at the appropriate
positions of the(m�

1+1)st row and zeros elsewhere. This small pertur-
bation makesem +1 orthogonal to the range space of the resulting per-
turbed matrix. Of course, this perturbation doesnot have the structure
ofHT

l (d
z
m ;m ). However, it is very informative in our framework, in

which we repeat that we use only the size and not the structure of the
perturbation because it implies that for the delays corresponding to the
tails, we cannotderive a worst-case bound (significantly) smaller than
1.

Analogous arguments hold for thed > m2 + l+ 1 case.

IV. SIMULATIONS

In Fig. 3(a), we plot a 10th-order two-channel impulse response com-
posed of a significant part of order 2, lying between positionsm1 = 3
andm2 = 5 and tails. In Fig. 3(b), we plot the 2-norm of the resid-
uals of the third-order LS equalizers for the various delays and bound
(7) (thick line). We observe that our bound is able to predict the perfor-
mance of the LS equalizers for the various delays. For some delays cor-
responding to the tails, the 2-norm of the residual of the LS equalizers
is “close” to 1, supporting the arguments of the previous subsection.

V. CONCLUSION

We performed a theoretical analysis of the LS equalization perfor-
mance in the cases in which theM th-order true subchannels possess
anmth-order significant part withm < M and tails of “small” leading
and/or trailing terms. We showed that if the diversity of the significant
part is sufficiently large with respect to the size of the tails, then the
lth-order LS equalizers withl � m� 1 perform well for all the delays
corresponding to the significant part. On the other hand, the perfor-
mance of the LS equalizers for the delays corresponding to the tails
may be poor. In practice, it is usually poor. Our results serve as an ex-
planation of the behavior of LS equalizers in realistic cases [3].
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