
944 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

Nesterov-Based Alternating Optimization for
Nonnegative Tensor Factorization: Algorithm

and Parallel Implementation
Athanasios P. Liavas , Member, IEEE, Georgios Kostoulas, Georgios Lourakis , Kejun Huang , Member, IEEE,

and Nicholas D. Sidiropoulos , Fellow, IEEE

Abstract—We consider the problem of nonnegative tensor fac-
torization. Our aim is to derive an efficient algorithm that is also
suitable for parallel implementation. We adopt the alternating op-
timization framework and solve each matrix nonnegative least-
squares problem via a Nesterov-type algorithm for strongly convex
problems. We describe a parallel implementation of the algorithm
and measure the attained speedup in a multicore computing envi-
ronment. It turns out that the derived algorithm is a competitive
candidate for the solution of very large-scale dense nonnegative
tensor factorization problems.

Index Terms—Tensors, nonnegative tensor factorization, opti-
mal first-order optimization algorithms, parallel algorithms.

I. INTRODUCTION

T ENSORS are mathematical objects that have recently
gained great popularity due to their ability to model multi-

way data dependencies [2], [3], [4], [5]. Tensor factorization (or
decomposition) into latent factors is very important for numer-
ous tasks, such as feature selection, dimensionality reduction,
compression, data visualization and interpretation. Tensor fac-
torizations are usually computed as solutions of optimization
problems [2], [3]. The Canonical Decomposition or Canon-
ical Polyadic Decomposition (CANDECOMP or CPD), also
known as Parallel Factor Analysis (PARAFAC), and the Tucker

Manuscript received April 27, 2017; revised September 12, 2017; accepted
November 5, 2017. Date of publication November 24, 2017; date of current
version January 16, 2018. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Tsung-Hui Chang. This
work was supported in part by NSF, under Grants IIS-1447788 and IIS-1704074,
and in part by computational time granted from the Greek Research & Technol-
ogy Network in the National HPC facility—ARIS—under project pa170403.
Part of this work was presented at IEEE International Conference on Acoustics,
Speech and Signal Processing, New Orleans, LA, USA, March 2017. (Corre-
sponding author: Athanasios P. Liavas.)

A. P. Liavas, G. Kostoulas, and G. Lourakis are with the School of Electri-
cal and Computer Engineering, Technical University of Crete, Chania 73100,
Greece (e-mail: aliavas@isc.tuc.gr; gkostoulas@isc.tuc.gr; glourakis@isc.
tuc.gr).

K. Huang is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
huang663@umn.edu).

N. D. Sidiropoulos was with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN 55455 USA. He is
now with the Department of Electrical and Computer Engineering, University
of Virginia, Charlottesville, VA 22904-4204 USA (e-mail: nikos@virginia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2777399

Decomposition are the two most widely used tensor factoriza-
tion models. In this work, we focus on nonnegative PARAFAC,
which, for simplicity, we call Nonnegative Tensor Factorization
(NTF).

Alternating Optimization (AO), All-at-Once Optimization
(AOO), and Multiplicative Updates (MUs) are among the most
commonly used techniques for NTF [3], [6]. Recent work for
constrained tensor factorization/completion includes, among
others, [7], [8], [9], and [10].

In [7], several NTF algorithms and a detailed convergence
analysis have been developed. A general framework for joint
matrix/tensor factorization/completion has been developed in
[8]. In [9], an Alternating Direction Method of Multipliers
(ADMM) algorithm for NTF has been derived, and an architec-
ture for its parallel implementation has been outlined. However,
the convergence properties of the algorithm in ill-conditioned
cases are not favorable, necessitating additional research to-
wards their improvement. In [10], the authors consider con-
strained matrix/tensor factorization/completion problems. They
adopt the AO framework as outer loop and use the ADMM for
solving the inner constrained optimization problem for one ma-
trix factor conditioned on the rest. The ADMM offers significant
flexibility, due to its ability to efficiently handle a wide range of
constraints.

In [11], two parallel algorithms for unconstrained tensor fac-
torization/completion have been developed and results concern-
ing the speedup attained by their Message Passing Interface
(MPI) implementations on a multi-core system have been re-
ported. Related work on parallel algorithms for sparse tensor
decomposition includes [12] and [13].

A. Contribution

In this work, we focus on dense NTF problems. Our aim is
to derive an efficient NTF algorithm, suitable for parallel im-
plementation. We adopt the AO framework and solve each ma-
trix nonnegative least-squares (MNLS) problem via a first-order
optimal (Nesterov-type) algorithm for L-smooth μ-strongly
convex problems.1 Then, we describe in detail an MPI imple-
mentation of the AO NTF algorithm and measure the speedup

1We note that a closely related algorithm for the solution of MNLS problems
has been used in [14] and [15]; we explain in detail later the performance
improvement offered by our approach.

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2373-4237
https://orcid.org/0000-0002-1166-051X
https://orcid.org/0000-0002-6460-6365

LIAVAS et al.: NESTEROV-BASED AO FOR NTF: ALGORITHM AND PARALLEL IMPLEMENTATION 945

attained in a multi-core environment. We conclude that the pro-
posed algorithm is a strong candidate for the solution of very
large dense NTF problems. A preliminary version of the results
contained in this manuscript has appeared in [1].

B. Notation

Vectors and matrices are denoted by small and capital bold
letters, for example, x and X, while tensors are denoted by calli-
graphic capital letters, for example, X . RI×J×K

+ denotes the set
of (I × J × K) real nonnegative tensors, while RI×J

+ denotes
the set of (I × J) real nonnegative matrices. ‖ · ‖F denotes the
Frobenius norm of the tensor or matrix argument, I denotes the
identity matrix of appropriate dimensions, and (A)+ denotes the
projection of matrix A onto the set of element-wise nonnegative
matrices. The outer product of vectors a ∈ RI×1 , b ∈ RJ×1 ,
and c ∈ RK×1 is the rank-one tensor a ◦ b ◦ c ∈ RI×J×K with
elements (a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k). The Khatri-Rao
(columnwise Kronecker) product of compatible matrices A and
B is denoted as A � B and the Hadamard (elementwise) prod-
uct is denoted as A � B. Finally, inequality A � B means that
matrix A − B is positive semidefinite.

C. Structure

In Section II, we briefly describe the NTF problem. In
Section III, we present the Nesterov algorithm for set-
constrained L-smooth μ-strongly convex optimization problems
and derive a Nesterov-type algorithm for the MNLS problem
with proximal term. In Section IV, we present the associated
AO NTF algorithm and in Section V we describe in detail a
parallel implementation. In Section VI, we test the efficiency
of the proposed algorithm with numerical experiments in both
serial and parallel computing environments. Finally, in Section
VII, we conclude the paper.

II. NONNEGATIVE TENSOR FACTORIZATION

Let tensor X o ∈ RI×J×K
+ admit a factorization of the form

X o = [[Ao ,Bo ,Co]] =
R∑

r=1

ao
r ◦ bo

r ◦ co
r , (1)

where Ao = [ao
1 · · · ao

R] ∈ RI×R
+ , Bo = [bo

1 · · · bo
R] ∈ RJ×R

+ ,
and Co = [co

1 · · · co
R] ∈ RK×R

+ . We observe the noisy tensor
X = X o + E , where E is the additive noise. Estimates of Ao ,
Bo , and Co can be obtained by computing matrices A ∈ RI×R

+ ,
B ∈ RJ×R

+ , and C ∈ RK×R
+ that solve the optimization prob-

lem

min
A≥0,B≥0,C≥0

fX (A,B,C), (2)

where fX is a function measuring the quality of the factorization
and the inequalities are element-wise. A common choice for fX
is

fX (A,B,C) =
1
2
‖X − [[A,B,C]]‖2

F . (3)

If Y = [[A,B,C]], then its matrix unfoldings, with respect to
the first, second, and third mode, are given by [4]

YA = A (C � B)T , YB = B (C � A)T ,

YC = C (B � A)T .

Thus, fX can be expressed as

fX (A,B,C) =
1
2

∥∥XA − A (C � B)T
∥∥2

F

=
1
2

∥∥XB − B (C � A)T
∥∥2

F

=
1
2

∥∥XC − C (B � A)T
∥∥2

F
.

(4)

These expressions form the basis for the AO NTF in the sense
that, if we fix two matrix factors, we can update the third by
solving an MNLS problem. For reasons related with the condi-
tioning of the MNLS problems, we propose to add a proximal
term. More specifically, if Ak , Bk , and Ck are the estimates
of A, B, and C, respectively, after the k-th AO iteration, then
Ak+1 is computed as

Ak+1 := argmin
A≥0

1
2

∥∥∥XA − A (Ck � Bk)T
∥∥∥

2

F

+
λA

k

2
‖A − Ak‖2

F , (5)

where λA
k ≥ 0 determines the weight assigned to the proxi-

mal term. If (Ck � Bk) is a well-conditioned matrix, then it
is reasonable to put small weight on the proximal term and
compute Ak+1 that leads to a large decrease of the cost func-
tion fX (A,Bk ,Ck). If, on the other hand, (Ck � Bk) is an
ill-conditioned matrix, then it is reasonable to put large weight
on the proximal term, leading to a better conditioned prob-
lem and easy computation of Ak+1 that improves the fit in
fX (A,Bk ,Ck) but is not very far from Ak . This is the strategy
we shall follow for the solution of problem (2) (see also [7],
[16]).

The computational efficiency of the AO NTF heavily depends
on the algorithm we use for the solution of problem (5). In this
work, we adopt the approach of Nesterov for the solution of
L-smooth μ-strongly convex problems. The derived algorithm
is optimal under the black-box first-order oracle framework [17,
Chapter 2] and is very efficient in practice. Furthermore, it leads
to an AO NTF algorithm that is suitable for parallel implemen-
tation.

III. OPTIMAL FIRST-ORDER METHODS FOR L-SMOOTH

μ-STRONGLY CONVEX MNLS PROBLEMS

In this section, we present an optimal first-order algorithm for
the solution of L-smooth μ-strongly convex MNLS problems.
Optimal first-order methods have recently attracted great re-
search interest because they are strong candidates and, in many
cases, the only viable way for the solution of very large opti-
mization problems.

946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

A. Optimal First-Order Methods for L-Smooth μ-Strongly
Convex Optimization Problems

We consider optimization problems of smooth and strongly
convex functions and briefly present results concerning their
information complexity and the associated first-order optimal
algorithms (for a detailed exposition see [17, Chapter 2]).

We assume that f : Rn → R is a smooth (that is, differen-
tiable up to a sufficiently high order) convex function, with
gradient ∇f(x) and Hessian ∇2f(x). Our aim is to solve the
problem

min
x

f(x), (6)

within accuracy ε > 0. The solution accuracy is defined as fol-
lows. If f ∗ := minx f(x), then point x̄ ∈ Rn solves problem
(6) within accuracy ε if f(x̄) − f ∗ ≤ ε.

Let 0 < μ ≤ L < ∞. A smooth convex function f is called
L-smooth or, using the notation of [17, p. 66], f ∈ S∞,1

0,L , if

0 ∇2f(x) LI, ∀x ∈ Rn , (7)

and L-smooth μ-strongly convex, or f ∈ S∞,1
μ,L , if

μI ∇2f(x) LI, ∀x ∈ Rn . (8)

The number of iterations that first-order methods need for the
solution of problem (6), within accuracy ε, is O

(
1√
ε

)
if f ∈

S∞,1
0,L , and O

(√
L
μ log 1

ε

)
if f ∈ S∞,1

μ,L [17, Theorem 2.2.2]. The

convergence rate in the first case is sublinear while, in the second
case, it is linear and determined by the condition number of the
problem, K := L

μ . Thus, strong convexity is a very important
property that should be exploited whenever possible.

An algorithm that achieves this complexity, and, thus, is first-
order optimal, appears in Algorithm 1 (see, also [17, p. 80]).
This algorithm can handle both the L-smooth case, by setting
q = 0, and the L-smooth μ-strongly convex case, by setting
q = μ

L > 0.
If the problem of interest is the constrained problem

min
x∈X

f(x), (9)

where X is a closed convex set, then the corresponding optimal
algorithm is very much alike Algorithm 1, with the only differ-
ence being in the computation of xk+1 . We now have that [17,
p. 90]

xk+1 = ΠX

(
yk − 1

L
∇f(yk)

)
, (10)

where ΠX(·) denotes the Euclidean projection onto set X. The
convergence properties of this algorithm are the same as those of
Algorithm 1. If the projection onto set X is easy to compute, then
the algorithm is both theoretically optimal and very efficient in
practice.

B. Nesterov-Type Algorithm for MNLS With Proximal Term

In the sequel, we present a Nesterov-type algorithm for the
MNLS problem with proximal term. Let X ∈ Rm×n , A ∈

Algorithm 1: Nesterov Algorithm for L-Smooth μ-Strongly
Convex Optimization Problems.

Input: x0 ∈ Rn , μ, L. Set y0 = x0 , α0 ∈ (0, 1), q = μ
L .

1 k-th iteration
2 xk+1 = yk − 1

L ∇f(yk);
3 αk+1 ∈ (0, 1) from α2

k+1 = (1 − αk+1)α2
k + qαk+1 ;

4 βk+1 = αk (1−αk)
α2

k +αk + 1
;

5 yk+1 = xk+1 + βk+1(xk+1 − xk)

Rm×r , B ∈ Rn×r , and consider the problem

min
A≥0

f(A) :=
1
2
‖X − ABT ‖2

F . (11)

The gradient and Hessian of f , at point A, are, respectively,

∇f(A) = −(
X − ABT

)
B (12)

and

∇2f(A) :=
∂2f(A)

∂vec(A)∂vec(A)T
= BT B ⊗ I � 0. (13)

Let L := max(eig(BT B)) and μ := min(eig(BT B)). If μ = 0
(for example, if r > n), then problem (11) is L-smooth. If μ >
0, then problem (11) is L-smooth μ-strongly convex. A first-
order optimal algorithm for the solution of (11) can be derived
using the approach of Section III-A. We note that [14] and [15]
solved problem (11) using a variation of Algorithm 1, which is
equivalent to Algorithm 1 with μ = 0. However, if μ > 0, then
this algorithm is not first-order optimal and, as we shall see later,
it performs much worse than the optimal.

We note that the values of L and μ are necessary for the devel-
opment of the Nesterov-type algorithm, thus, their computation
is imperative.2

As we mentioned in Section II, under the AO framework,
in order to avoid very ill-conditioned problems (and guaran-
tee strong convexity), we introduce a proximal term and solve
problem

min
A≥0

fP(A) :=
1
2
‖X − ABT ‖2

F +
λ

2
‖A − A∗‖2

F , (14)

for given A∗ and appropriately chosen λ. We choose λ based on
L and μ, and denote this functional dependence as λ = g(L, μ).
If μ

L � 1, then we may set λ ≈ 10μ, significantly improving
the conditioning of the problem by putting large weight on
the proximal term; however, in this case, we expect that the
optimal point will be biased towards A∗. Otherwise, we may set
λ � μ, putting small weight on the proximal term and permitting
significant progress towards the computation of A that satisfies
approximate equality X ≈ ABT as accurately as possible.

The gradient of fP, at point A, is

∇fP(A) = −(
X − ABT

)
B + λ(A − A∗). (15)

2An alternative to their direct computation is to estimate L using line-search
techniques and overcome the computation of μ using heuristic adaptive restart
techniques [18]. However, in our case, this alternative is computationally de-
manding, especially for large-scale problems, and shall not be considered.

LIAVAS et al.: NESTEROV-BASED AO FOR NTF: ALGORITHM AND PARALLEL IMPLEMENTATION 947

The Karush-Kuhn-Tucker (KKT) conditions for problem (14)
are [14]

∇fP(A) ≥ 0, A ≥ 0, ∇fP(A) � A = 0. (16)

These expressions can be used in a terminating condition. For
example, we may terminate the algorithm if

min
i,j

(
[∇fP(A)]i,j

)
> −δ1 ,max

i,j

(∣∣∣[∇fP(A) � A]i,j
∣∣∣
)

< δ2 ,

(17)
for small positive real numbers δ1 and δ2 . Of course, other
criteria, based, for example, on the (relative) change of the cost
function can be used in terminating conditions.

A Nesterov-type algorithm for the solution of the MNLS
problem with proximal term (14) is given in Algorithm 2. For
notational convenience, we denote Algorithm 2 as

Aopt = Nesterov MNLS(X,B,A∗).

1) Computational Complexity of Algorithm 2: Quantities W
and Z are computed once per algorithm call and cost, respec-
tively, O(mnr) and O(rn2) arithmetic operations. Quantities
L and μ are also computed once and cost at most O(r3) op-
erations. ∇fP(Yk), Ak , and Yk are updated in every iteration
with cost O(mr2), O(mr), and O(mr) arithmetic operations,
respectively.

IV. NESTEROV-BASED AO NTF

In Algorithm 3, we present the Nesterov-based AO NTF. We
start from point (A0 , B0 ,C0) and solve, in a circular manner,
MNLS problems with proximal terms, based on the previous
estimates.

For later use, we note that the most demanding computations
during the update of factor matrix Ak via the Nesterov-type
MNLS algorithm are (see line 3 of Algorithm 2)

W̃A := −XA (Ck � Bk) ,

Z̃A := (Ck � Bk)T (Ck � Bk)

=
(
CT

k Ck

)
�

(
BT

k Bk

)
.

(18)

Analogous quantities are computed for the updates of Bk and
Ck .

After the updates of the factor matrices, we use two functions
which have been proven very useful in our experiments, in
the sense that they significantly reduce the number of outer
iterations necessary to reach convergence.

Function “Normalize” normalizes each column of Bk+1 and
Ck+1 to unit Euclidean norm, putting all the power on the
respective columns of Ak+1 . We denote its output as AN

k+1 ,
BN

k+1 and CN
k+1 .

Function “Accelerate” implements an acceleration mecha-
nism. The development of efficient acceleration mechanisms is
a very important research topic, see, for example, [19], [20],
but is beyond the scope of this paper. In our experiments, we
adopted the simple acceleration technique used in the function
parafac of the n-way toolbox [21], which is briefly described
as follows.

At iteration k + 1 > k0 , after the computation and normal-
ization of Ak+1 , Bk+1 , and Ck+1 , we compute

Anew = AN
k + sk+1(AN

k+1 − AN
k), (19)

where sk+1 is a small positive number; a simple choice for sk+1
is sk+1 = (k + 1)

1
n , where n is initialized as n = 3 and its value

may change as the algorithm progresses. In an analogous man-
ner, we compute Bnew and Cnew . If fX (Anew ,Bnew ,Cnew) ≤
fX (Ak+1 ,Bk+1 ,Ck+1), then the acceleration step is success-
ful, and we set Ak+1 = Anew , Bk+1 = Bnew , and Ck+1 =
Cnew . If the acceleration step fails, then it is ignored and we set
Ak+1 = AN

k+1 , Bk+1 = BN
k+1 , and Ck+1 = CN

k+1 as input to
the next AO update. If the acceleration step fails for n0 itera-
tions, then we set n = n + 1, thus, decreasing the exponent of
the acceleration step. Typical values of k0 and n0 are k0 = 5
and n0 = 5.

It has been shown in [16] that the AO NTF algorithm with
proximal term falls under the block successive upper bound
minimization (BSUM) framework, which ensures convergence
to a stationary point of problem (2).

We can use various termination criteria for the AO NTF al-
gorithm based, for example, on the (relative) change of the cost
function and/or the latent factors.

V. PARALLEL IMPLEMENTATION OF AO NTF

In this section, we assume that we have at our disposal
p = pA × pB × pC processing elements and describe a par-
allel implementation of the Nesterov-based AO NTF algorithm,
which has been motivated by the medium-grained approach

948 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

of [12].3 The p processors form a three-dimensional Carte-
sian grid and are denoted as piA ,iB ,iC , for iA = 1, . . . , pA ,
iB = 1, . . . , pB , and iC = 1, . . . , pC .

A. Variable Partitioning and Data Allocation

In order to describe the parallel implementation, we intro-
duce certain partitionings of the factor matrices and the tensor
matricizations. We partition the factor matrix Ak into pA block
rows as

Ak =
[(

A1
k

)T · · · (ApA
k)T

]T

, (21)

with AiA
k ∈ R

I
p A

×R , for iA = 1, . . . , pA . We partition accord-
ingly the matricization XA and get

XA =
[(

X1
A

)T · · · (XpA
A)T

]T

, (22)

with XiA
A ∈ R

I
p A

×J K . In a similar manner, we partition Bk and
XB into pB block rows, each of size J

pB
× R and J

pB
× IK,

respectively, and Ck and XC into pC block rows, each of size
K
pC

× R and K
pC

× IJ , respectively.
We partition tensor X into p subtensors, according to the

partitioning of the factor matrices (see Fig. 1), and allocate
its parts to the various processors, so that processor piA ,iB ,iC

receives subtensor X iA ,iB ,iC , defined in (20), at the bottom of
this page.

We assume that, at the end of the k-th outer AO iteration,
a) processor piA ,iB ,iC knows AiA

k , BiB
k , and CiC

k ;
b) all processors know AT

k Ak , BT
k Bk , and CT

k Ck .

B. Communication Groups

We define certain communication groups, also known as com-
municators [22], over subsets of the p processors, which are used

3We note that both the single-core and the multi-core implementations solve
the same problem, thus problems that are identifiable in single-core environ-
ments remain identifiable in multi-core environments and the solutions, in both
cases, are practically the same.

Fig. 1. Tensor X , factors Ak , Bk , and Ck , and their partitioning for pA =
pB = 3 and pC = 2.

for the efficient collaborative implementation of specific com-
putational tasks, as explained in detail later.

First, we define pA two-dimensional processor groups, each
involving the pB × pC processors piA ,:,: , for iA = 1, . . . , pA

(horizontal layers), with the iA -th processor group used for the
collaborative update of AiA

k . Similarly, we define groups p:,iB ,: ,
for iB = 1, . . . , pB , and p:,:,iC , for iC = 1, . . . , pC , which are
used for the collaborative update of BiB

k and CiC
k , respectively.

We define pB × pC one-dimensional processor groups, each
involving the pA processors p:,iB ,iC . Each of these groups is
used for the collaborative computation of AT

k+1Ak+1 . Simi-
larly, we define groups piA ,:,iC and piA ,iB ,: , which are used for
the collaborative computation of BT

k+1Bk+1 and CT
k+1Ck+1 ,

respectively.

C. Factor Update Implementation

We describe in detail the update of Ak , which is achieved via
the parallel updates of AiA

k , for iA = 1, . . . , pA , and consists
of the following stages:

1) Processors piA ,:,: , for iA = 1, . . . , pA , collaboratively
compute the I

pA
× R matrix

W̃iA
A = −XiA

A (Ck � Bk), (23)

X iA,iB,iC := X
(

(iA − 1)
I

pA
+ 1 : iA

I

pA
, (iB − 1)

J

pB
+ 1 : iB

J

pB
, (iC − 1)

K

pC
+ 1 : iC

K

pC

)
. (20)

LIAVAS et al.: NESTEROV-BASED AO FOR NTF: ALGORITHM AND PARALLEL IMPLEMENTATION 949

and the result is scattered among the processors in the
group; thus, each processor in the group receives I

pA pB pC

successive rows of W̃iA
A . Term W̃iA

A can be computed
collaboratively because

XiA
A (Ck � Bk) =

pB∑

iB =1

pC∑

iC =1

XiA ,iB ,iC
A (CiC

k � BiB
k),

(24)
where XiA ,iB ,iC

A is the matricization of X iA ,iB ,iC , with
respect to the first mode. Processor piA ,iB ,iC knows
XiA ,iB ,iC

A , BiB
k , and CiC

k , and computes the correspond-
ing term of (24). The sum is computed and scattered
among processors piA ,:,: via a reduce-scatter operation.

2) Each processor in the group piA ,:,: uses the scattered part
of W̃iA

A , Z̃A = CT
k Ck � BT

k Bk , and AiA
k , and computes

the updated part of AiA
k+1 , via the while loop of the Nes-

terov MNLS algorithm.
3) The updated parts of AiA

k+1 are all-gathered at the proces-
sors of the group piA ,:,: , so that all processors in the group
learn the updated AiA

k+1 .

4) By applying an all-reduce operation to
(
AiA

k+1

)T
AiA

k+1 ,
for iA = 1, . . . , pA , on each of the single-dimensional
processor groups p:,iB ,iC , for iB = 1, . . . , pB and iC =
1, . . . , pC , all p processors learn AT

k+1Ak+1 .4

The updates of Bk and Ck are implemented by following
analogous steps.

The Euclidean norms of the columns of Ak+1 , Bk+1 , and
Ck+1 appear on the diagonals of AT

k+1Ak+1 , BT
k+1Bk+1 , and

CT
k+1Ck+1 , which are known to all processors. Thus, no com-

munication is necessary for the normalization of the updated
matrix factors.

After the normalization step of the (k + 1)-st AO iteration,
processor piA ,iB ,iC knows the parts of the normalized factors,
that is, AiA N

k+1 , BiB N
k+1 , CiC N

k+1 , as well as AiA N
k , BiB N

k , and CiC N
k ,

and can compute AiA
new , BiB

new , and CiC
new (see (19)). The com-

putation of the cost function fX at points (Ak+1 ,Bk+1 ,Ck+1)
and (Anew ,Bnew ,Cnew) is implemented collaboratively. Each
processing element computes its local contribution and, via an
all-reduce operation over the whole processor grid, the values
of the cost function are computed and become known to all pro-
cessors, thus, all processors make the same decision regarding
the success or failure of the acceleration step.

D. Communication Cost

We focus on the parallel updates of AiA
k , for iA = 1, . . . , pA ,

and present results concerning the associated communication
cost. Analogous results hold for the updates of BiB

k and CiC
k .

We assume that an m-word message is transferred from one
process to another with communication cost ts + tw m, where

4In the cases where R � I
pA

it seems preferable to compute AT
k+1Ak+1

via an all-gather operation on terms AiA
k+1 , for iA = 1, . . . , pA , on each of

the single-dimensional processor groups p:, iB , iC . However, in this work, we
mainly focus on small-rank factorizations, thus, in our communication cost
analysis and experiments we do not present results for this alternative.

ts is the latency, or startup time for the data transfer, and tw is
the word transfer time [22].

Communication occurs at three algorithm execution points.
1) The I

pA
× R matrix W̃iA

A is computed and scattered
among the pB × pC processors of group piA ,:,: , using
a reduce-scatter operation, with communication cost [22,
Section 4.2]

CA
1 = ts (pB + pC − 2) + tw

IR

pApBpC
(pBpC − 1) .

2) Processors piA ,:,: learn the updated AiA
k+1 through an all-

gather operation on its updated parts, each of dimension
I

pA pB pC
× R, with communication cost [22, Section 4.2]

CA
2 = ts (pB + pC − 2) + tw

IR

pApBpC
(pBpC − 1) .

3) Finally, AT
k+1Ak+1 is computed by using an all-

reduce operation on quantities
(
AiA

k+1

)T
AiA

k+1 , for iA =
1, . . . , pA , on each single-dimensional processor group
p:,iB ,iC , with communication cost [22, Section 4.3]

CA
3 =

(
ts + tw R2) log2 pA . (25)

The communication that takes place during the acceleration
step involves scalar quantities and, thus, is ignored.

When we are dealing with large messages, the tw terms dom-
inate the communication cost. Thus, if we ignore the startup
time, the total communication time is

CA = tw

(
2IR

pA pB pC
(pBpC − 1) + R2 log2 pA

)

≈ tw

(
2IR

pA
+ R2 log2 pA

)

≈ 2IR tw
pA

,

(26)

with the second approximation being accurate for R � I
pA

. The
presence of pA in the denominator of the last expression of (26)
implies that our implementation is scalable in the sense that,
if we double I , then we can have (approximately) the same
communication cost per processor by doubling pA .

Analogous results hold for the updates of Bk and Ck .

VI. NUMERICAL EXPERIMENTS

A. Matlab Environment

In this subsection, we test the effectiveness of the Nesterov-
based AO NTF algorithm with numerical experiments per-
formed in Matlab.

At first, we compare the performance of the algorithm we
propose in Algorithm 2 for the solution of the MNLS prob-
lem (11) with that of the algorithm proposed in [14] and [15]
(for the moment, we ignore the proximal term, thus, we put
λ = 0 in Algorithm 2). As we mentioned in subsection III-B,
if matrix BT B is rank deficient, that is, if μ = 0, then both al-
gorithms have practically the same behavior. However, if BT B
is full-rank, then the two algorithms exhibit different behavior.

950 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

Fig. 2. Number of iterations to convergence for (blue line) Algorithm 2, with
λ = 0, and (red line) algorithm of [14].

In order to illustrate their difference, we perform the follow-
ing experiment. We generate random matrices X ∈ Rm×n and
B ∈ Rn×r with m = 300, n = 200, and r = 100, with inde-
pendent and identically distributed (i.i.d) elements, taking val-
ues uniformly at random in the interval [0, 1]. Then, we solve
problem (11) with the two algorithms, starting from the same
random point. The terminating conditions are determined by
parameters δ1 = δ2 = 10−3 . In Fig. 2, we plot the number of
iterations needed by the two algorithms to converge over 100
independent realizations. We observe that the Nesterov-type al-
gorithm which exploits strong convexity is much more efficient
than the algorithm which does not. Thus, in the sequel, we shall
not present performance results involving the algorithm of [14].

Next, we compare the performance of a Matlab implemen-
tation of the proposed algorithm with routines parafac of the
n-way toolbox [21] and sdf nls of tensorlab [23]. Our aim is
to provide some general observations about the difficulty of the
problems and the behavior of the algorithms and not a strict
ranking of the algorithms.5

The parafac routine essentially implements an AO NTF al-
gorithm, where each MNLS problem is solved via the function
fastnnls, which is based on [24, Section 23.3]. It also in-
corporates the normalization and acceleration schemes briefly
described in Section IV. The sdf nls routine for NTF first ap-
plies a “squaring” transformation to the problem variables [25]
and then solves an unconstrained problem via an AOO-based
Gauss-Newton method.

In our experiments with synthetic data, we focus on the
cputime and the Maximum, over the three latent factors, Rel-
ative Factor Error (MRFE), which is computed via function
cpd err of tensorlab.

In the numerical experiments we present in this subsection,
we choose the parameter values that determine the terminating
conditions so that all algorithms achieve (approximately) the
same average MRFEs (of course, this is not always possible

5For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5
GHz Intel Core i7 Intel processor and 16 GB RAM.

with one set of parameter values). Thus, we set Tol = 10−5 for
parafac, TolFun = 10−9 for sdf nls, and δ1 and δ2 , which
determine the terminating conditions for the Nesterov-based
MNLS, are set to δ1 = δ2 = 10−2 . The outer iterations of the
Nesterov-based AO NTF terminate if the relative changes of the
normalized latent factors become sufficiently small, that is,

‖MN
k+1 − MN

k ‖F

‖MN
k ‖F

< tolAO , for M = A,B,C, (27)

where tolAO = 10−4 .
The proximal parameter λ is computed as

λ := g(L, μ) =

⎧
⎪⎨

⎪⎩

10μ, if L
μ > 106 ,

μ, if 106 > L
μ > 104 ,

μ
10 , if 104 > L

μ .

(28)

All algorithms start from the same triple of random matrices,
(A0 ,B0 ,C0), which have i.i.d. elements, uniformly distributed
in [0, 1].

1) True Latent Factors With i.i.d. Elements: We start with
synthetic data by assuming that the true latent factors consist
of i.i.d. elements, uniformly distributed in [0, 1]. The additive
noise is zero-mean white Gaussian with variance σ2

N .
In Table I, we present the average, over 10 realizations,

cputime and MRFE for various tensor “shapes,” ranks R =
15, 50, and noise variances σ2

N = 10−2 , 10−4 . We observe that
the Nesterov-based AO NTF is very competitive in all cases, in
the sense that it converges fast, achieving very good accuracy in
most of the cases.

2) True Latent Factors With Correlated Elements: It is well-
known that, if some columns of (at least) one latent factor are
almost collinear, convergence of the AO algorithm tends to be
slow (these cases are known as “bottlenecks”) [19]. In the sequel,
we test the behavior of the three algorithms in cases with one,
two, and three bottlenecks. More specifically, we generate the
true latent factors with i.i.d. elements as before and we create a
single “bottleneck” by modifying the last two columns of one
latent factor so that each becomes highly correlated with another
column of the same latent factor (the correlation coefficient is
larger that 0.98). In an analogous way, we generate double and
triple “bottlenecks.”

In Table II, we focus on the case I = J = K = 300, R = 50,
σ2

N = 10−4 , and present the average, over 10 realizations,
cputime and MRFE. We observe that the problems become
more difficult as the number of bottlenecks increases, in the
sense that both the cputime and the MRFE increase as the
number of bottlenecks increases. Again, the Nesterov-based AO
NTF algorithm is very efficient in all cases. Analogous observa-
tions have been made in extensive numerical experiments with
other tensor shapes and noise levels.

3) Real-World Data: In order to test the behavior of the
aforementioned algorithms with real-world data, we use the
tensor with size 1021 × 1343 × 33 derived from the hyperspec-
tral image “Souto_Wood_Pile” [26]. Since, in this case, the true
latent factors are unknown, we focus on the cputime and the

LIAVAS et al.: NESTEROV-BASED AO FOR NTF: ALGORITHM AND PARALLEL IMPLEMENTATION 951

TABLE I
AVERAGE, OVER 10 REALIZATIONS, cputime AND MAXIMUM RELATIVE FACTOR ERROR FOR NESTEROV-BASED AO NTF, sdf nls, AND parafac, FOR

TRUE LATENT FACTORS WITH I.I.D. ENTRIES, UNIFORM IN [0, 1]

TABLE II
AVERAGE, OVER 10 REALIZATIONS, cputime AND MAXIMUM RELATIVE FACTOR ERROR FOR NESTEROV-BASED AO NTF, sdf nls, AND parafac, FOR

TRUE LATENT FACTORS WITH CORRELATED ENTRIES

TABLE III
cputime AND RELATIVE FACTORIZATION ERROR FOR NESTEROV-BASED AO NTF, sdf nls, AND parafac, FOR REAL-WORLD DATA

Relative Factorization Error (RFE), defined as

RFE(A,B,C) :=
‖X − [[A,B,C]]‖F

‖X‖F
.

In Table III, we present the average cputime and RFE for ranks
R = 10, 20, 30. The averages are with respect to the initial
points (A0 ,B0 ,C0), which are random with i.i.d. elements
uniformly distributed in [0, 1], and are computed over 5 real-
izations. We observe that the Nesterov-based AO NTF is very
efficient in these cases as well.

B. Parallel Environment - MPI

We now present results obtained from the MPI implementa-
tion described in detail in Section V. The program is executed
on a DELL PowerEdge R820 system with SandyBridge - In-
tel(R) Xeon(R) CPU E5 − 4650v2 (in total, 16 nodes with 40
cores each at 2.4 Gz) and 512 GB RAM per node. The matrix
operations are implemented using routines of the C++ library
Eigen [27]. We assume a noiseless tensor X , whose true la-
tent factors have i.i.d elements, uniformly distributed in [0, 1].
The terminating conditions for MNLS are determined by values
δ1 = δ2 = 10−2 .

The AO terminates at iteration k if (recall that tensor X is
noiseless)

RFE(Ak ,Bk ,Ck) < 10−3 .

We test the behavior of our implementation for various ten-
sor sizes and rank R = 15, 50, 100. The performance metric
we compute is the speedup attained using p = pA × pB × pC

processors.
In Figs. 3–6, we plot the speedup for the following cases

(in all cases with synthetic data, the tensor X has eight billion
entries):

1) Cubic tensor: we set I = J = K = 2000 and implement
the algorithm on a grid with pA = pB = pC = 3

√
p, for

p = 1, 8, 27, 64, 125, 216, 343, 512.
2) One large dimension: we set I = 400, J = 400, K =

50000 and implement the algorithm on a grid with pA =
pB = 1, pC = p, for p = 1, 8, 27, 64, 125, 216, 343, 512.

3) Two large dimensions: we set I = 5000, J =
320, K = 5000 and implement the algorithm on
a grid with pA = pC =

√
p, pB = 1, for p =

1, 9, 36, 64, 121, 225, 361, 529.
4) Finally, we use the hyperspectral image from the pre-

vious section, with I = 1021, J = 1343, K = 33, and
implement the algorithm on a grid with pA = pB =

√
p,

pC = 1, for p = 1, 9, 36, 64.

952 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

Fig. 3. Speedup achieved for a 2000 × 2000 × 2000 tensor with p cores, for
p = 1, 8, 27, 64, 125, 216, 343, 512.

Fig. 4. Speedup achieved for a 400 × 400 × 50000 tensor with p cores, for
p = 1, 8, 27, 64, 125, 216, 343, 512.

Fig. 5. Speedup achieved for a 5000 × 320 × 5000 tensor with p cores, for
p = 1, 9, 36, 64, 121, 225, 361, 529.

Fig. 6. Speedup achieved for the hyperspectral image “Souto_Wood_Pile”
[26] with p cores, for p = 1, 9, 36, 64.

We observe that, in all cases, we attain significant speedup,
which is rather insensitive to the tensor shape and rank.

VII. CONCLUSION

We considered the NTF problem. We adopted the AO frame-
work and solved each MNLS problem via a Nesterov-type algo-
rithm for smooth and strongly convex problems. We described
in detail a parallel implementation of the algorithm on a three-
dimensional processor grid. In extensive numerical experiments,
the derived algorithm was proven very efficient, compared with
state-of-the-art competitors. Our parallel implementation at-
tained significant speedup, rendering our algorithm a strong can-
didate for the solution of very large-scale dense NTF problems.

REFERENCES

[1] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropou-
los, “Nesterov-based parallel algorithm for large-scale nonnegative tensor
factorization,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
New Orleans, LA, USA, Mar. 5–9, 2017, pp. 5895–5899.

[2] P. M. Kroonenberg, Applied Multiway Data Analysis. Hoboken, NJ, USA:
Wiley, 2008.

[3] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix
and Tensor Factorizations. Hoboken, NJ, USA: Wiley, 2009.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, Sep. 2009.

[5] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3551–
3582, Jul. 2017.

[6] A. Cichocki et al., “Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015.

[7] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factor-
ization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758–
1789, 2013.

[8] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,”
IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600, Jun. 2015.

[9] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for constrained
tensor factorization via alternating direction method of multipliers,” IEEE
Trans. Signal Process., vol. 63, no. 20, pp. 5450–5463, Oct. 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

