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The proposed algorithms produce simultaneously stable tracking
and size estimates converging to the true parameters. The DA procedure
provides the most accurate results, since it processes the cumulative
(in a window) measurement information which increases the computa-
tional time. The relative computational time IMM-DA:MKF:IMM-PF
corresponds approximately to the proportions: 18:6:1. It should be
noted that the PF involves an additional “artificial” noise, necessary
for prediction. The proper choice of noise parameters can lead to a
good result. However, the PF aspect ratio RMSE slowly increases over
time [Fig. 3(d)]. This is observed over various scenarios and different
sample sizes, as shown in Fig. 4. A similar tendency is indicated also
in [9]. Taking this fact into consideration, we may conclude, that the
MKFm provides a reasonable compromise between accuracy and com-
putational time. The model validation scheme, incorporated within the
MKFm, gives an additional size type information: if we are interested
in the size type, which is not the true one, the Kolmogorov—Smirnov
test certainly rejects this hypothesis. For example, if we want to check
the hypothesis 83 = 8., the estimated test statistic ktest2 = 8
definitely exceeds a 5% critical value of 1.36, since 8., = 6-.

VIII. CONCLUSION

A suboptimal solution to the problem of extended object tracking
is proposed in this correspondence. MC algorithms (DA, MKFm and
PF) are developed for the object extent parameter estimation, based
on positional and along-range object extent measurements. The kine-
matic states are estimated with an IMM filter and with a MKFm, re-
spectively. The approach of separation of states from parameters is im-
plemented in the IMM-DA and IMM-PF. The overall state vector has a
decreased dimension compared with the joint state-parameter estima-
tion, the type of maneuver can be identified relatively quickly, and the
kinematic states are estimated with small peak dynamic errors. The de-
veloped techniques offer a reasonable trade-off between accuracy and
computational time and successfully deal with the complex target-ob-
server geometry.
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On the Sensitivity of the Transmit MIMO Wiener Filter
With Respect to Channel and Noise Second-Order
Statistics Uncertainties

Despoina Tsipouridou and Athanasios P. Liavas, Member, IEEE

Abstract—We consider the sensitivity of the transmit multiple-input
multiple-output (MIMO) Wiener filter with respect to channel and noise
second-order statistics (SOS) uncertainties. Using results from matrix
perturbation theory, we derive second-order approximations to the excess
mean-square error (EMSE) induced by using the channel or noise SOS
estimates as if they were the true quantities. Assuming optimal training
and sufficiently high signal-to-noise ratio (SNR), we develop simple and
informative approximations to the EMSE, which indicate that the channel
estimation errors are much more significant than the noise SOS estimation
errors. Uncertainties due to channel time variations induce EMSE that
increases with increasing SNR and asymptotically tends to a constant
value.

Index Terms—Multiple-input (MIMO)

pre-equalization, Wiener filtering.

multiple-output systems,

I. INTRODUCTION

Joint optimization of transmit and receive filters for combatting
frequency selectivity and/or interstream interference in multiple-input
multiple-output (MIMO) or multiuser systems has been extensively
studied (see, for example, [1] and the references therein). In order to
keep the mobile units as simple as possible, we may consider separate
transmit or receive processing. The transmit matched filter (TxXMF),
the transmit zero-forcing filter (TxZF) and the transmit Wiener filter
(TxWF) are three linear pre-equalization (or precoding) structures
that combat frequency selectivity and/or interstream interference and
keep the receivers simple, because the only processing required at the
receiver is a scalar scaling [1], [2].

The TxWF, which outperforms the two other structures in terms of
mean-square error (MSE) and bit-error rate (BER) [1], can be com-
puted if the channel and the input and noise second-order statistics
(SOS) are perfectly known at the transmitter. This may happen, for
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Fig. 1. System model.

example, in time-division duplex (TDD) systems or systems with a
feedback information channel. If the channel and/or the noise SOS are
unknown at the transmitter, as it is usually the case, then a common
approach towards the design of the TXWF is to estimate the unknown
quantities and then use the estimates as if they were the true quantities.
Estimation errors and/or time variations introduce uncertainties in the
estimated quantities and induce excess MSE (EMSE) leading to TxWF
performance degradation.

In this correspondence, we consider the sensitivity of the TxWF with
respect to channel and noise SOS uncertainties and we develop second-
order approximations to the associated EMSEs. While the general ex-
pressions are complicated and difficult to interpret, we are able to derive
simple and informative EMSE approximations for the high signal-to-
noise ratio (SNR) cases. It turns out that the EMSE due to channel esti-
mation errors is proportional to the minimum MSE (MMSE), while the
EMSE due to noise SOS estimation errors is proportional to the squared
noise variance. On the other hand, the EMSE due to channel time vari-
ations increases for increasing SNR and asymptotically reaches a con-
stant value.

The rest of the correspondence is structured as follows. In Section II,
we compute the TXWF assuming that the channel and the noise SOS
are known at the transmitter and we give an expression for the MMSE
[1]. Also, we derive a general expression for the EMSE due to channel
or noise SOS uncertainties. In Sections III and IV, we develop second-
order approximations to the EMSE assuming channel and noise SOS
uncertainties, respectively. In Section V, we present simulations that
support our theoretical results and we conclude the correspondence in
Section VL.

Notation: Superscripts ,7, and * denote transpose, conju-
gate transpose and elementwise conjugation, respectively. Re{-}
extracts the real part of a complex number, & denotes the Kro-
necker product and vec(-) denotes the vectorization operator. The
eigenvalues of matrix A are denoted as A, (A). If A isann X n
semi-positive-definite matrix, then its eigenvalues are ordered such
that A((A) > Aa(A4) > -+ > A\ (A).

II. THE TRANSMIT WIENER FILTER

A. The System Model

We consider the pre-equalized, baseband-equivalent, discrete-time
frequency-flat MIMO system, with n, transmit and n,. receive antennas
(with n. < ny), depicted in Fig. 1. This system is described by the
expression

S=HPs+n @))
where s is the n, x 1 input signal, P is the n¢ X n, pre-equaliza-
tion matrix, H is the n,, X n; channel matrix, and n is the n, x 1
additive channel noise. The input and noise vectors, s and n, are as-
sumed to be complex-valued, independent, circular, with covariance
matrices R, = I,,, and R, = o1, respectively; furthermore, the
noise is assumed to be Gaussian. This model is particularly suitable
for the broadcast scenario, where the users cannot cooperate in order
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to combat interstream interference and, thus, the need for pre-equal-
ization is imperative. In this case, the ith element of s is the symbol
intended for the ith user.

B. Computation of the TxWF

Our aim is to compute the TXWF P and the scalar 3 that minimize
the cost function [2]

mse(P, 3):= € [||s — ﬁ*léﬂg] (2)
subject to the transmit power constraint
€ [I1Ps|l2] = E. 3

Function mse( - ) can be analytically expressed as

mse(P, 3) = tr (In,) — 26 'Re {tr(HP)}
+8 2 (HPPEH ) + 37 %tx(R,).  (4)

The optimal values for this constrained optimization problem are [2]

Bo = ()
and P, = ,30]:’0, where
5 H R
= (H"H+al,) H ©6)
and
_ tr(Ry)
= B 7

In [1], quantity « has been defined as inverse SNR.
Using the optimal values I, and 3, in (4), it can be shown that the
MMSE is

MMSE := mse(P,, 3,)
=tr(I,,) — 2 Re{tr(P,H)}
+ tr (HPUPfHH) +atr (Popf)

=: MSE(P,). ®)

C. Channel and Noise SOS Uncertainties

In the above development, we assumed that the channel matrix H
and the noise covariance matrix R,, are perfectly known at the trans-
mitter. Perhaps, the easiest way to obtain estimates of these quantities
is through training. In frequency division duplex (FDD) systems, the
estimates can be computed at the receiver and communicated to the
transmitter via a feedback channel, while in TDD systems they can be
computed at the transmitter. In this work, we consider channel esti-
mation at the receiver, i.e., FDD systems. Of course, analogous results
hold for TDD systems.

The channel estimate H at the transmitter may suffer from two basic
sources of uncertainty, namely, estimation errors and time variations.
We define the channel error or mismatch as

AH:=H-H ©)
and we assume that vec(A H ) is complex valued, circular with
Ryco(amy :=¢ [vec(AH)vecH(AH)} =X. (10)

Next, we compute ¥ for the two cases of interest.
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1) Channel estimation errors: In this case, we assume that the
channel is time invariant and we estimate it using training. If we
denote the n+ X Ny, training block as St, and the corresponding
channel output as Yir, then the maximum-likelihood (ML)
channel estimate is [6, p. 174]

1
H=Yus! (Sustt) (11)
Optimal channel estimates are obtained for semi-unitary training
matrix Si,, i.e., Strst’r’ o Ip,. The corresponding channel esti-
mation error covariance matrix is given by [6, p. 175]

o2

’l
Intnw

Y=
—Ntl

(12)

2) Channel time variations: In this case, we assume that uncertain-
ties due to channel time variations dominate those due to channel
estimation errors (i.e., we assume that the channel estimate is per-
fect and we focus on channel time variations).! We denote with
H = H; the true channel at time instant ¢ and with H=1H T
the outdated channel version at the transmitter, where 7 is the
time needed for the feedback loop. We assume that {H,} is a
stationary matrix random process and, at each time instant ¢, the
elements of H; are zero-mean, unit variance independent and
identically distributed (i.i.d.) Gaussian random variables, yielding
vec(H),vec(H) ~ CN(0,1,,,,). The channel coefficients are
time varying according to Jakes’ model, with common maximum
Doppler frequency f4. Thus, H and H can be modeled as jointly
Gaussian with cross-correlation [7, p. 93]

g[vec(H)VQCH (.E[)] = /)TIntnr

where p- is the normalized correlation coefficient specified by the
Jakes” model, i.e., pr = Jo(27 fq7), with Jo( - ) the zeroth-order
Bessel function of the first kind. In this case, it can be easily proved
that
S=2(1=p)lnn,- (13)
We continue with the noise SOS uncertainties. Since we assume that
R, = o2, , we define the SOS estimation error as
AR, = (67— 0p) I,. (14)
Using training data S, it can be shown that an unbiased noise variance
estimate is [9, p. 697]

2 1
0y = ————
(:\’tr - "t)

o (YT (15)

where HJ‘H is the orthogonal projector onto the orthogonal comple-

ment of the column space of S“ . For more details, the reader is re-
ferred to, for example [6, Sec. 9.4]. Using optimal training, it can be
shown that the noise variance estimate (15) has variance

4

_ 0_2)2] _ Tn
" e (Ner — nt)

(16)

D. EMSE of the TxWF With Uncertainties

In this subsection, we develop a second-order approximation to the
EMSE induced by channel or noise SOS uncertainties. We denote with

'We introduce the statistical model for the channel time variations just for
analysis purposes. Robust precoders exploiting this knowledge (see, for ex-
ample, [3]) are beyond the scope of this correspondence.
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Pand /3 the scaled TxWF and the Wiener scalar computed by using the
channel or the noise SOS estimates as if they were the true quantities.

The corresponding TxWF is P = 31:’ The MSE associated with P
and 3 is

mse(P, 3) = MSE(ﬁ')

Using a Taylor expansion of function MSE( - ) around point P,, we
obtain

MSE(P) = MSE(E,) + tr(AP"MSE"(B,)AP)  (17)

where AP := P — P, and MSE”(I:"(,N) is the second derivative of the
function MSE, evaluated at the point I°,. From (8), we obtain that [8]

MSE"(P,) = H"H + aI,,. (18)
We define the EMSE as
EMSE(P) := E[MSE(P) — MSE(P, )]
= E[tr(AP"MSE" (P,)AP)]
s [tr (APH (HHH 4 oJ,lt) AP)] . (19)

III. EMSE DUE TO CHANNEL UNCERTAINTIES

In this section, we assume that the transmitter perfectly knows the
noise SOS and has obtained a channel estimate & , which is used for the
computation of the TXWF. In order to compute the EMSE in (19), we
must develop a first-order approximation to AP with respect to AH.
This is our task in the sequel. If we use in (6) the estimate H asifit
were the true channel H, then we compute the scaled pre-equalization
matrix

2 A ~ -1
P= (HHH + aInt) g (20)
which can be written as
o —1
P= <HHH +al,,+ H'AH+ AH"H +()(||AH||2))
~—_—
Ka
x(H" + AH™). (1)
Using the first-order approximation [5, p. 131]
(A+A4)7 =47 —47'A447! (22)

and definition (6), we obtain

P=P — (HHH n a[nt) (KaPy — AH™) + O(|AH|).

Thus, a first-order approximation to AP is

—1 ~
AP =— (HHH + aLH) (KaP, — AH'™) (23)
—_—
—_—

A A

and a second-order approximation of the EMSE is given by
EMSE(P) = € [tr (APH(HHH n aLH)AP)]

(23)

Eltr(AT AA)]
—¢ [tr (AALMAH)]

2)
=¥

—_~

[vecH(A) (I.. ® A) vec(A)]

=tr ((LIT @ A) E[vec(A)vec' (A)]) 24)
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where at point (a) we used expression [4, p. 42]

tr(ABCD) = vec (D7) (C" @ A)vec(B).

From the definitions of A in (23) and K a in (21), we obtain
vec(A) = vec(H? AHP,) + vec (AHH (HI:’O - Inr))

= (If’(:[ ® HH) vec(AH)

————
T

n ((P]H'T - I) ® I,H) vee(AH')

[N

(25)

~~

e
where we made use of [4, p. 17]
vec(ABC) = (CT @ A)vec(C).
Using the commutation matrix I, ., [4, p. 9], we obtain
Vec(AHH) =K, vec(AH")
yielding
vec(A) = Tivec(AH) + ToKvec(AH™)

where, for notational simplicity, the commutation matrix is denoted as
K. Using the circular symmetry of AH and (10), we obtain

EMSE(P) = tr ((L,,, © A) (71' ST 731(2*1(”72")) :
Finally, we obtain the expression
EMSE(P) =

T, +T» (26)

where
Ty := tr ((Inr ® A) '7—127—111)
= tr (7" (I, © A) IiT)
22 ( (PPf ® HAHH) z) @7
and
Ty = tr ((InT 2 A) LES K" 7;H)
=tr (K" (I,, ® A TLKS”
: (A T *)
. (K” ((HP - I)
x (PIHT - I,,) © A) KT)
=tr ((A @ (H*P; - Inr)

x (PEHT _ I)) E)

where we made use of [4, p. 16]
(A C)(Bw D)

(28)

AB® CD =
and [4, p. 117]

KAoBK" =(B® A)
for matrices with compatible dimensions.

Until now, we have expressed the EMSE in terms of X. Expressions
(26)—(28) are admittedly complicated and do not provide significant
insight. In the sequel, we assume sufficiently high SNR, and we derive
simple and informative approximations of the EMSE.
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A. Channel Estimation Errors and High SNR

In this subsection, we assume that the channel uncertainties are due
to estimation errors, implying that ¥ = (o2 /N:,) I,.,n, . Using the
SVD of H, it can be shown that, for: = 1,. .., n, (recall the definition
of A in (23))

Ni (H7H)

NHAR') = S

(29)

For « < M, (H"H), that is, « much smaller than the smallest
nonzero eigenvalue of H* H, implying sufficiently high SNR, we
obtain

~ tr(1n,). (30)

rrH)
H
HHAH ZA (HH

Another high-SNR approximation that will prove useful in the sequel
is (the proof is provided in the Appendix)

tr (P fz’f') ~ L MMSE. 31
a
Starting with T'; in (27) and using expression

tr(A @ B) = tr(A) tr(B)

we obtain

31
( )77,0’ lMMSE

N «

(32)

In order to compute an approximation of T2, we use an expression
analogous to (29), fori = 1,....n,

x((rpr-n,) (PP - 1,)) = (MH”QW

For high SNR, the right-hand side of (33) goes to zero, yielding

tr ((HP - I) (f{ff'HT - I)) ~ 0.

Thus a2 0w

o tr(A)te ((H*P; - I) (ﬁOTHT - I))

(33)

(34)

(34)

~ 0.
(35)

We conclude that, for sufficiently high SNR, term T: is negligible
compared with T';; this statement is in agreement with simulations in
Section V. Combining expressions (26), (32) and (35), we obtain

nyos 1

—MMSE = ]j: MMSE.

ltl Vg

EMSE(P) ~

Thus, for optimal training and sufficiently high SNR

E
EMSE(P) MMSE (36)
We observe that the EMSE is approximately proportional to the
MMSE, with the proportionality factor being the ratio of the transmit
power, E, to the length of the training block used for channel estima-
tion, Ny.. Expression (36) can be used as a criterion for the choice of

the length of the training block Vi, and/or the total transmit power E.
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B. Time-Varying Channels and High SNR

In this subsection, we assume that the uncertainties due to time vari-
ations dominate those due to estimation errors, yielding ¥ = 2(1 —
p+ )10, n, . The only term of the previous analysis that is affected is
(27), which becomes

T, —2(1—p,)tr( P PT HAHH)
W ot~ poytr (B P ) tr (). (37)
giving that
EMSE®) = 21, (1 — p») tr(PF L), (38)

It is easy to see that

tr (ﬁ:ﬁf) = tr (f’olz’f) = tr (H.AQHH)

_ (HH")
Z O HH” T a)?

is an increasing function of SNR and tends to tr((H H)~") for SNR
tending to infinity. Thus, the EMSE increases for increasing SNR and
asymptotically attains the value

EMSE(P) = 2n.,.(1 — p,) tr((HH™)™"). (39)
Of course, the above approximations are accurate for slow time varia-
tions because fast time variations introduce large channel uncertainties

rendering our asympotic analysis inaccurate.

IV. EMSE DUE TO NOISE SOS UNCERTAINTIES

In this section, we assume that the channel is perfectly known at the
transmitter and the noise SOS estimate R, is used as if it were the true
R,,. Then, the scaled precoding matrix becomes

y —1
P= <HHH+ M1t> HY. (40)

E

Using (22), a first-order approximation to AP, with respect to AR,
is given by

s (AR [,n N
AP =-S5 (H H+ aIm) P,
(23) _tr(ARn)
= E AP,. (41)

Substituting the above expression in (19), we obtain the second-order
approximation

EMSE(P) = [tr Af’H(HHH+aIM)Af’)]

(PHAP ) (42)
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A. Optimal Training and High SNR

Considering optimal training and high SNR, recalling that we con-
sider the spatially and temporally white Gaussian noise case and using
(16), we get

el (AR = & [ (52— o2)°]

=n7e|(oh - al)’]- 3)
Using (16) and (43), (42) becomes
w62 - o2)?]
. L
EMSE(P) = = tr (PD APO>
4
_ Ny Oy ~IT ~,
= B (Po AR,) : (44)

Using the definitions of P, and Ain (6) and (23), respectively, we write

tr (PUHAPO) = (H (HHH 4 ulnt)is HH>

= tr(HA*H"). (45)
An expression analogous to (29), fori = 1,...,n,,is
A N (HTH)
NEHALAF = o
(HA ) (M(HPH) + )3
which, for high SNR, gives
1 1
N(HAHT) = = .
AT e ~ N
Thus
N . nr 1 —1
tr (PTAP )~y ————— = || (HH" 7
r( o A ) ;)\f(HHH) ||( ) ||F (46)
and finally, combining expressions (44) and (46), we obtain
. 4
2 N0, H 2
EMSEP) ~ ————|| | HH . 47
SE() E2(Ny, — ny) ”( ) Il @7

This approximation states that the EMSE is proportional to the squared
noise variance, o+, which decreases very fast for increasing SNR.
The proportionality factor is determined by the transmit power, E,
the length of the training block, Vi, the number of the transmit and
receive antennas n; and n.., and the conditioning of the matrix channel
H, through the Frobenius norm ||(HH™)™"||%. In the simulations
section, we will see that this bound is a good approximation to the
EMSE, especially at high SNR.

V. SIMULATIONS

We consider a system with n; = 3 transmit antennas and n, =
2 receive antennas. We consider the channel matrix H with elements
given in Table .2 The noise is spatially and temporally white, circularly
symmetric complex Gaussian with variance ¢2. We set the transmit

20ur results hold for any channel matrix. Since in our theoretical develop-
ments we did not average over the channels, but only over the channel uncer-
tainties, in the simulations we use only one channel realization. We have made
analogous observations in extensive simulation studies.
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TABLE I
ELEMENTS OF CHANNEL MATRIX H

-0.2646 + 0.1212%j
0.0664 + 0.0179%j

-0.0456 - 0.2588*j
-0.1597 + 0.4986%j

-0.0081 - 0.7268%j
0.0656 - 0.1866*j

10° } ;

w 107"} ;
[77]
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Fig. 2. MMSE using the true channel (“-0-") and expectation of the MSEs
using the channel estimate (*“-*-").
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Fig. 3. Experimentally computed EMSE, theoretical second-order approxima-
tion (26), and high-SNR approximation (36) for the case of channel estimation
errors.

power E n+. We assume that the training block is composed of
Ny = 20 columns.

Simulation 1. Channel Estimation Errors: In Fig. 2, we plot the
MMSE (8) and the mean of the MSEs computed using the channel
estimate (the average is over different realizations of the channel esti-
mation error A H'). We observe that the distance of these two quantities
is approximately constant and does not depend on the SNR, verifying
expression (36).

In Fig. 3, we present the experimentally computed EMSE, the the-
oretical second-order approximation (26) and approximation (36). We
observe that the experimental and theoretical EMSE values practically
coincide for SNR higher than 5 dB, while approximation (36) is very
close to the EMSE, especially at high SNR.

In Fig. 4, we plot terms T'; and T2 of the theoretical EMSE of (26).
We observe that, for SNR higher than 7 dB, the contribution of term
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Fig. 4. Terms T and T of the EMSE second-order approximation (26) for
the case of channel estimation errors.
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Fig. 5. MMSE using the true channel (“-0-") and expectation of the MSEs
using the channel estimate for p = 0.99 (“-*-") and for p = 0.9 (dotted line).

T5 to the EMSE is much smaller than the contribution of term T,
supporting our claim that the EMSE is approximately equal to term
T for the high-SNR cases.

Simulation 2. Channel Time Variations: In Fig. 5, we plot the
MMSE (8) and the mean of the MSEs computed using the outdated
channel versions for channel correlation coefficients p- = 0.99,0.9
(the average is over different realizations of the channel uncertainties
due to channel time variations A H). We observe that the distance of
the two curves from the MMSE increases for increasing SNR, and the
mean of the MSEs reaches a floor. This happens because the EMSE
induced by the channel time variations increases for increasing SNR
and asymptotically attains a limit value.

In Fig. 6, we present the theoretical second-order approxima-
tion (26), the corresponding experimentally computed EMSE, the
high-SNR approximation (38) and the asymptotic value (39) for
channel correlation coefficient equal to p 0.99, implying very
accurate channel information at the transmitter. We observe that the
second-order approximation is very accurate, while (38) is a good
approximation to the EMSE for SNR higher than 20 dB.

Simulation 3. Noise Estimation Errors: In Fig. 7, we present the
theoretical second-order approximation (44), the corresponding exper-
imentally computed EMSE and the high-SNR approximation (47). We
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Fig. 6. Experimentally computed EMSE, theoretical second-order approxima-
tion (26), high-SNR approximation (38) and asymptotic EMSE value (39) for
channel time variations (p = 0.99).
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Fig. 7. Experimentally computed EMSE, theoretical second-order approxima-
tion (44), and high-SNR approximation (47) for the case of noise SOS estima-
tion errors.

observe that the first two quantities practically coincide and
approximation (47) is very close to the true EMSE for SNR higher
than 15 dB.

Comparing the EMSEs for the cases of estimation errors only (see
Figs. 3 and 7), we observe that the error induced by the channel esti-
mation errors is much more significant than that induced by the noise
SOS estimation errors.

VI. CONCLUSION

We considered the behavior of the TXWF under channel and noise
SOS uncertainties by developing second-order EMSE approximations.
We derived simple EMSE approximations in the high-SNR cases. Con-
sidering the channel estimation errors, we concluded that the EMSE is
proportional to the MMSE, with the proportionality factor determined
by the transmit power E and the length of the training block V.. Con-
sidering the channel time variations, we found that the EMSE increases
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and, for high SNR, it reaches an asymptotic value. For the case of noise
SOS estimation errors, we showed that the EMSE is proportional to the
squared noise variance, . A comparison of the EMSEs for the cases
of estimation errors only, shows that the error induced by the channel
estimate is much more significant than that induced by the noise SOS
estimate.

APPENDIX
A USEFUL APPROXIMATION

In order to simplify term tr( P P]') in the high-SNR cases, i.e., « <
Mo, (HE H), we notice that

tr (lef’f) = tr (Popf) .

Using the definitions of MMSE and P, in (8) and (6), respectively, we
get

MMSE = tr(I,,, ) — 2tr Uﬂj+tr@1ﬁﬁﬂﬂﬂ)

(
Rt
(

tr AH”H) +tr (AH”HAH”H)

+ atr (
tr(ln,) —
+ atr (P PH)

Using approximations analogous to (30), we can write for the
high-SNR cases

MMSE = tr (I,,.) — 2tr (I,,,.) + tr (I,,.) + atr (PoﬁOH)
= atr (f’of’f) .
Finally, we get

(48)
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