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Abstract. Divisible load scenarios occur in modern media server applications since most multimedia applications typically require access
to continuous and discrete data. A high performance Continuous Media (CM) server greatly depends on the ability of its disk IO subsystem
to serve both types of workloads efficiently. Disk scheduling algorithms for mixed media workloads, although they play a central role in this
task, have been overlooked by related research efforts. These algorithms must satisfy several stringent performance goals, such as achieving
low response time and ensuring fairness, for the discrete-data workload, while at the same time guaranteeing the uninterrupted delivery of
continuous data, for the continuous-data workload. The focus of this paper is on disk scheduling algorithms for mixed media workloads
in a multimedia information server. We propose novel algorithms, present a taxonomy of relevant algorithms, and study their performance
through experimentation. Our results show that our algorithms offer drastic improvements in discrete request average response times, are
fair, serve continuous requests without interruptions, and that the disk technology trends are such that the expected performance benefits can
be even greater in the future.

1. Introduction

Multimedia servers for many applications (such as digital
libraries, news-on-demand, teleteaching, etc.) will have to
manage mixed-media workloads containing continuous data
requests (e.g., for video and audio) and discrete data requests
(e.g., for text or image data). The performance requirements
that have to be met are very stringent and request-type spe-
cific. Each continuous data fragment must be delivered within
a specified time limit, in order to avoid interruptions in the
flow of data, termed hiccups or glitches. At the same time,
the server must ensure good performance for discrete requests
(such as low response times, fairness, etc.). Consequently,
offering high performance to both workload types is a formi-
dable challenge, which disk-scheduling algorithms must face.
However, disk-scheduling algorithms for mixed workloads
have not enjoyed a great deal of attention by related research
efforts, which have mostly concentrated either on the schedul-
ing of continuous workloads or of discrete workloads, but not
both.

Multimedia servers, like all servers in a divisible load sce-
nario, must be scalable in the sense that they can support a
potentially very large number of simultaneous data streams
between the server and different clients. In high-end appli-
cations with thousands of simultaneous streams the server
is typically configured as a multi-disk system, possibly in a
multi-computer cluster. To fully leverage the performance po-
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tential of these architectures, the load needs to be intelligently
divided across the underlying disks and/or cluster nodes. Like
in other applications of divisible load scheduling [2,16,17],
the placement of the data and the scheduling of data requests
are key for load balance and scalability. The architecture that
we assume in this paper partitions large data objects such as
videos and spreads the resulting data fragments across disks
or cluster nodes in a striped (i.e., round-robin) or random
manner. Fragments must be large enough so that each of them
resides on a single node. This way, the data access load can be
evenly distributed across all nodes while a data stream is be-
ing served, yet the load distribution is coarse-grained enough
to achieve close-to-optimal throughput of each node. So the
server perfectly scales up, in terms of the number of simulta-
neously sustainable streams, by adding more disks or nodes
to the cluster. Perfect load division is possible under the as-
sumption that the server delivers data fragments to its clients
in a time-wise regular, round-based manner. Having to serve
spontaneously arriving, discrete data requests additionally to
and concurrently with the periodic, continuous data requests
poses an extra challenge that is addressed in this paper. In
general, the efficiency of each disk’s or node’s local process-
ing has a major impact on the aggregated performance of
the entire server. The focus of the current paper is on local
scheduling algorithms, and this has great relevance for the
scalability of a cluster-based multimedia server.

Continuous media servers provide service in time periods
called “rounds” and within each round all outstanding re-
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quests for continuous data fragments must be served in or-
der to avoid presentation glitches. However, since a typical
workload of a modern media server (and each of its disk de-
vices) typically consists of requests for continuous and dis-
crete data, scheduling these different types of load efficiently
corresponds to dividing the round time period appropriately
to the different types of load, which constitutes, in essence,
a divisible load scheduling scenario in the time dimension.
In fact, one proposed scheduling algorithm divides a round
into sub-rounds, one for each workload type. Hence, from
this viewpoint the algorithms that follow study the problem
of efficiently dividing the service round among the two dif-
ferent load types. Viewed from this perspective, the focus of
this paper is to propose disk scheduling algorithms for these
different types of workload, provide a taxonomy of relevant
algorithms, and study their performance.

The organization of the paper is as follows. In the rest
of this section we briefly review related work, describe the
system model, and define the problem at hand. In section 2
we develop new scheduling algorithms, motivate their useful-
ness, and present a taxonomy of them. The simulation-based
testbed and the performance evaluation of the proposed algo-
rithms are presented in section 3. The results clearly show the
benefits of our novel technique, coined clustered scheduling.
In section 4 we develop alternative clustering techniques and
study the performance improvements they introduce. More-
over we compare the performance of clustered scheduling
against that of traditional “flat” scheduling algorithms. Fi-
nally, we study the performance of these algorithms on future
disk drives, using disk technology improvement projections.
These results testify that the related technology trends are in
favor of the proposed clustered scheduling algorithms, whose
comparative performance thus can be expected to be even bet-
ter in the future. The paper is concluded in section 5.

1.1. Related work

1.1.1. Media servers on clusters
There is great consensus that the I/O subsystem of a com-
puter system has become the performance bottleneck. This
observation was the motivation for a large body of research
in the area of storage servers, aiming to increase the avail-
able I/O bandwidth in the system. One thread of this research
led to the development of disk arrays and to the develop-
ment of new methods for placing data objects on disk arrays,
which attempt to exploit their inherent potential for high per-
formance and reliability, mainly through data placement tech-
niques, such as striping [22]. Multimedia data, such as video
and audio, require very large storage capacities and very large
I/O bandwidths, making disk arrays the natural choice for sec-
ondary storage and consequently multi-disk/multi-processor
systems suitable solutions for large video servers. Typical ex-
amples of such large distributed video servers are Microsoft’s
Tiger system [3] (a.k.a. MS Theater Server), Oracle’s me-
dia server [14], Fellini/Cineblitz from Lucent [20], etc. The
main advantage of these systems is that they manage to effi-
ciently balance the disk storage and bandwidth requirements

of the users across the system. This is achieved mainly by
striping all server contents across all of its disks. Another key
factor to efficiently exploit the distributed implementation of
these systems is request scheduling. The schedule is distrib-
uted between the disks/processors, which use it to send the
appropriate block of data to a viewer at the correct time.

1.1.2. Disk scheduling algorithms
Early scheduling algorithms focused on reducing seek times.
The Shortest Seek Time First (SSTF) algorithm [6] achieved
this; however, it is highly unfair and starvation-bound. SCAN
scheduling was also proposed in [6]. It serves requests in
an elevator-like manner (as it sweeps the disk in either one
or both directions), allowing seek-time optimizations, while
increasing the fairness. In [8] the authors proposed a para-
meterized generalization of SSTF and SCAN. The V (R) al-
gorithm operates as SSTF except that, every time it changes
direction it adds a penalty, dependent on the parameter R and
the seek distance. When R = 1 (R = 0) V (R) reduces
to SCAN (SSTF). The performance of these algorithms, as
well as other variation of SCAN, such as the LOOK algorithm
(which changes scanning direction when no more requests are
pending in the current direction) has been studied experimen-
tally in [33] and analytically in [5].

A significant development in modern-disk scheduling was
to also target the high costs owing to rotational delays. These
algorithms [12,29] attempted to minimize the sum of seek and
rotational delays by favoring, for instance, the request with
the Smallest Positioning Time First (SPTF). Recently, disk
drives have been developed which can allow the exploitation
of their detailed knowledge of the requested blocks’ positions
and minimize seek and rotational delays [23].

1.1.3. Disk scheduling algorithms for continuous data
requests

The SCAN algorithm is inapplicable for continuous data re-
quests since it is oblivious of deadlines. The Earliest Dead-
line First (EDF) algorithm [19] is a natural choice; however,
it has poor performance since it does not attempt to reduce
the overhead. SCAN-EDF [29] is a hybrid that serves re-
quests in EDF order, but when several requests have the same
deadline, they are served using SCAN. Most related recent
research has adopted the notion of scheduling with rounds
[1,9,10,22,31–33]. Each continuous data object (stream) is
divided into blocks (also called fragments) such that the play-
back duration of each fragment is some constant time (typi-
cally, from one to a few seconds).

The round length represents an upper bound on the time in
which the storage server must retrieve from disk the next frag-
ments for all active continuous displays, or some displays will
suffer a glitch. Within a round, it is possible to employ either
a round-robin or a SCAN algorithm. The latter performs seek
optimizations, resulting in better disk throughput. However,
this is achieved at the expense of higher start-up latencies; the
display cannot be started immediately after the retrieval of its
first block but only after the end of the round. This is done
to avoid glitches, since the service order differs from round to
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round. This limitation is not present when using round-robin
scheduling, which also has lower RAM buffer requirements
since it does not require the double-buffering scheme required
by SCAN between successive rounds. A compromise was
achieved with the Group Sweeping Scheduling (GSS) algo-
rithm [33]. GSS groups streams and employs round-robin
scheduling for the different groups and SCAN scheduling for
the streams’ blocks in a group. Thus, when there is only one
group GSS reduces to SCAN and when each stream is in its
own group GSS reduces to round-robin.

1.1.4. Disk scheduling algorithms for mixed-media
workloads

To our knowledge, the works with some relevance to mixed-
media disk scheduling are [11,18,21,24,25,27,30]. The work
in [25] overviewed the performance goals for mixed work-
load scheduling, which are similar to ours, and studied only
how some known algorithms for continuous-request schedul-
ing, such as EDF and SCAN/EDF, affect the response time of
discrete (or aperiodic, as they call them) requests. A simple
scheduling scheme, called “the immediate server approach”
[18] was employed for discrete requests, according to which
discrete requests were served in between two successive EDF-
selected continuous requests. In [11] the authors contribute an
analysis of the trade-offs in managing the I/O bandwidth re-
source in a multimedia server with mixed-media workloads.

Since multimedia disk scheduling research has moved
away from EDF-based algorithms, the work in [21] attempted
to analytically model and predict the performance of multime-
dia servers with mixed workloads, when scheduling is based
on the notion of rounds. The work in [21] is a preliminary
attempt to define the issues and present initial algorithms

Many disk-scheduling algorithms consider mixed work-
loads in the sense of workloads with different Quality of Ser-
vice (QoS) requirements and several algorithms have been
developed that provide QoS guarantees to different classes
of applications. Some representative efforts were made at
[4,24,30]. In [30] the scheduler assigns weights to the ap-
plication classes. Each class receives disk bandwidth propor-
tional to its weight. In a similar approach in [4] an approxi-
mation of the Generalized Processor Sharing (GPS) scheduler
is implemented and weights are assigned to the application
classes according to the GPS. In [24] a two-level scheme
is employed where bandwidth allocation and scheduling are
separate tasks. The scheduling level cares only for the effi-
cient scheduling of admitted requests and the bandwidth allo-
cation level provides a proper share of the disk bandwidth to
the different classes.

The later assumption is also made in our approach. We
assume the existence of a separate task that delivers to the
scheduler a proper number of requests per round in order
the sessions to meet their QoS requirements. We focus on
the scheduler, which is dedicated to efficiently schedule the
delivered requests (from QoS sensitive applications) as well
as best-effort requests. A preliminary version of this pa-
per was published in [27]. Our work differs from all oth-
ers and extends our previous work in [27] in that: (a) stud-

ies the performance of additional algorithms, (b) consid-
ers additional performance metrics, such as the fairness of
the algorithms, (c) contributes novel algorithms and eval-
uates their performance showing significant further perfor-
mance improvements, (d) compares the proposed hierarchi-
cal scheduling algorithms against flat scheduling algorithms,
and (e) includes a study of how the proposed algorithms will
perform on future disk products, using known technology
improvement projections, which is very important given the
pace with which related technology improves.

1.2. System model and problem definition

Our storage server receives a mixed workload consisting of
requests for continuous and discrete objects. It employs an
admission controller which bounds the number of admitted
continuous objects, given the availability of resources (such
as RAM buffers, disk bandwidth, etc.) [26]. The admission
controller ensures that the service of the requests that are de-
livered to the scheduler is sufficient in order their performance
requirements to be met. We also adopt the notion of schedul-
ing with rounds, outlined above. In addition, the admission
controller will reserve some sub round period for discrete re-
quests which can be characterized as best-effort requests and
are interested only for the response time and the fairness of
the algorithms.

Within this framework, the problem at hand is to derive
disk-scheduling algorithms that will meet the following per-
formance goals:

1. Continuous objects meet their performance requirements.
(The displays of continuous objects observe no glitches.)

2. Discrete requests have small average response times.

3. Discrete requests do not starve, and discrete requests are
fairly served.

The disk’s workload consists of N concurrent continuous-
data requests, C-requests, per scheduling round and also
discrete-data requests, D-requests. In each round, the desired
continuous blocks are known before hand (they are simply the
next blocks of the admitted streams). The requests for these
blocks are in a waiting queue (C-queue). D-requests arrive
according to a Poisson process with rate λD and enter their
waiting queue (D-queue). In each round we aim to produce a
schedule, which meets the above performance goals.

2. Mixed-load scheduling: algorithms and a taxonomy

Before proceeding to the description of the proposed algo-
rithms we will define a taxonomy of related algorithms which
we hope will be useful to designers, implementers, and re-
searchers, in putting the problem and its prospective solutions
in context. The taxonomy categorizes the algorithms along
two key dimensions:

1. The number of separate scheduling phases in a round.
The algorithms are categorized as Two-Phase Scheduling
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(TPS) algorithms when two separate schedules are pro-
duced, one for the C-requests and one for the D-requests,
and the phases are non-overlapping in time. One-Phase
Scheduling algorithms (OPS) produce mixed schedules,
containing both C- and D-requests. TPS algorithms are
specified as TPS : Phase1_Alg/Phase2_Alg.

2. The number of scheduling levels. Hierarchical or clus-
tered scheduling algorithms for D-requests will be pre-
sented. These algorithms are based on defining clusters of
D-requests. At the higher level, the algorithms are con-
cerned with the efficient scheduling of clusters. At the
lower level, the algorithms are concerned with the schedul-
ing of a cluster’s requests. Hierarchical algorithms are
specified as (Alg_High)/(Alg_Low), where Alg_High and
Alg_Low are the algorithms used at the higher and lower
levels, respectively.

Consequently, using the above notation an algorithm specified
as TPS: ALG1/ [ALG2/ALG3] stands for a two phase schedul-
ing algorithm that schedules C-requests using ALG1 and
D-requests using a hierarchical scheduling algorithm which
forms clusters and serves clusters using ALG2 and requests
inside clusters using ALG3.

2.1. Clustering and hierarchical scheduling

We define a C-interval as the disk interval between the disk
cylinders of any two requested C-fragments that are succes-
sive in the current SCAN’s direction. All D-requests be-
longing to the same C-interval form a cluster. Hierarchical
scheduling algorithms in essence decompose the problem of
scheduling all D-requests into the sub problems of deriving
efficient schedules of, first, the clusters and, then, each clus-
ter’s requests.

We propose two lower-level scheduling algorithms. Their
motivation is as follows. Given a non-trivial set of C-requests,
clustering results in a number of small C-intervals (such that
any seek within the C-interval is a “short seek” [28]). Ap-
plying seek-optimizing algorithms (such as SCAN) in such
small intervals (i) does not result in major savings, and (ii) fo-
cuses at the wrong overhead component. To give a concrete
example, consider a disk drive with 6500 cylinders and a set
of 15 requested C-fragments, randomly distributed over the
disk’s surface. Any seek within the defined 430-cylinder-wide
C-intervals will be a “short seek”, the cost of which, given
current technology, is only a few (e.g., less than four) mil-
liseconds. However, in such drives the rotational delay can be
considerably higher than the seek cost (e.g., up to 6 msec, for
the drives with the currently fastest rotating speed). Further-
more, the transfer time can actually be significantly higher
than both of the above costs (e.g., a 200 KB image in a
disk with 17 MB/sec transfer rate, requires a transfer time of
12 msec). Given, as mentioned in section 1, the capabilities
of modern disk controllers, further optimizations, such as the
ones that follow, are possible.

The CI-SPTF (C-Interval Shortest Positioning Time First)
Algorithm
According to this algorithm:

1. The D-queue is partitioned into interval queues, one per
C-interval. The D-requests are distributed to the appropri-
ate interval queues.

2. Within each interval queue the D-requests are sorted1 ac-
cording to their total positioning costs (seek, and rotation
times), in ascending order.

3. CI-SPTF serves D-requests according to their order in the
interval queue.

4. The interval queue is resorted after the service of a D-re-
quest.

The CI-OPT (C-Interval Optimal) Algorithm
CI-SPTF is a greedy algorithm, which may not produce op-
timal schedules. CI-OPT looks at all D-requests in the inter-
val queue, considers all possible schedules, and determines
the one with the minimum cost. It is well known that such
optimality problems are reducible to the Traveling Salesman
Problem (TSP) [7,15]. For this reason, we place an upper
bound on the number of cluster members (e.g., six, thus lead-
ing to the CI-OPT(6) algorithm). (Our studies have shown
that the performance benefits for larger clusters become mar-
ginal, while the simulation run-times become intolerable.)
According to this algorithm:

1. The interval queues are constructed as in CI-SPTF, except
that when one is to contain more than the specified max-
imum of D-requests, it is recursively subdivided into two
equal-sized queues.

2. The interval queues are then sorted in the order computed
by CI-OPT.

The overall (hierarchical) algorithm serves the clusters of
D-requests in some order (which in this paper is SCAN) and
within each cluster (C-interval) serves the D-requests accord-
ing to the order in the corresponding interval queue as pro-
duced by CI-SPTF or CI-OPT(6). Note that the performance
results include this overhead.

In addition, before serving a D-request within a cluster,
the algorithms check if there will be enough time to serve all
remaining C-requests (using SCAN). If so, the D-request is
served; else, it is postponed until the next round. Note that
this check can rapidly be performed using the known detailed
models for the seek cost, the rotational delays, and the transfer
times.

2.2. Two phase scheduling

In two phase scheduling (TPS) schemes we serve C-requests
and D-requests separately into disjoint time periods (C-period
and D-period) within each round. Each schedule can be pro-
duced by any known or novel algorithm. In this paper we
will assume that at the beginning of each round a schedule
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for the N C-requests is constructed according to the SCAN
policy, and then in the remaining time (until the end of the
current round) the D-requests are served according to either
the SCAN discipline or a hierarchical scheduling discipline.
Thus, we will focus on TPS:SCANSCAN and on SCAN/ SCAN

CI-OPT(6)
,

respectively. For the latter (hierarchical) algorithm, the clus-
ters which will be visited in SCAN order during the second
phase are defined as in the CI-OPT(6) algorithm, except that
instead of a C-interval, the whole disk is considered.

2.3. One phase scheduling

In one phase scheduling schemes C-requests and D-requests
are served together in an interleaved manner. D-requests
that arrive during the service period of C-requests, do not
necessarily have to wait until the end of that period. We
propose and study the following one-phase scheduling algo-
rithms:

FAMISH (FAir MIxed-scan ScHeduling)
D-requests are ordered in the D-queue based on their arrival
time. FAMISH ensures that:

• All C-requests will be served within the current round.

• No D-request Di will be served in an earlier round than
Dj , if Dj is ahead of Di in the D-queue.

In particular, FAMISH will:

1. Construct a SCAN schedule for the C-requests for this
round.

2. Incorporate the D-request at the head of the D-queue, in its
proper position in the current SCAN schedule.

3. Calculate whether serving this SCAN schedule (which in-
cludes this D-request) will result in a hiccup for one or
more C-requests in the SCAN.

4. If not, the iteration continues from step 2.

5. If so, the iteration stops, this D-request is removed from
the current SCAN for this round and the requests in the
resulting SCAN are served.

In addition to OPS:FAMISH, we will also consider the
OPS: SCAN

CI-SPTF and OPS: SCAN
CI-OPT(6)

algorithms.

3. Experimentation and performance results

3.1. Experimental testbed

Our simulation results have been extracted by modeling a
modern disk drive. The parameters of the disk drive are given
in table 1.

The seek time modeling as a function of the distance is
given by

Seek(d) =




1.867 · 10−3 + 1.315 · 10−4
√

d (msec),
if 1 � d � 1344,

3.8635 · 10−3 + 2.1 · 10−6d (msec),
otherwise.

(1)

Table 1
Disk characteristics.

Cylinders 6,720
Revolution speed 10,000 RPM
Rotation time 6 ms
Number of zonesa 1
Transfer time 17 MBps
Track capacity >90 Kbytes

a We assume 1 zone for simplicity.

Table 2
Data characteristics.

C-request size Mean 200000 bytes
Gamma distributed standard deviation 100000 bytes

D-request size Mean 70000 bytes
Normal distributed standard deviation 20000 bytes

The rotational delay for each D-request is computed by keep-
ing track of the starting disk sector within the cylinder con-
taining the D-request. Given the constant angular velocity
of the disk and the seek distances, along with the accurate
seek cost model above, we can calculate which sector will be
passing beneath the disk head at the end of the seek and thus
compute the actual rotational delay. The transfer time is given
from the disk’s transfer rate and the block size.

The data characteristics for C- and D-requests are given
in table 2. Given that the round duration is 1 sec, the
values for C-requests reflect typical data characteristics for
MPEG-1 data. The sizes of D-requests are typically smaller
and obey a normal distribution. Note that a good fraction of
the D-requests are smaller than the track size. For these the
rotational delay is a significant cost factor, whereas this effect
dismisses for requests that are larger than a full track.

The arrival of D-requests is driven by a Poisson process
with arrival rate λD and it is assumed that arriving D-requests
are uniformly distributed over the disk. All simulations con-
sist of five independent runs of 40,000 rounds each (which are
enough for the algorithms to reach steady-state). During each
run: the number of C-requests is held constant and the results
for a specific performance metric are calculated with cumu-
lative data. For example, the steady-state D-request average
response time is obtained from the ratio of total response time
of D-requests to the total number of serviced D-requests. The
final value for a metric is calculated as the mean of that metric
under the five runs.

3.2. Performance metrics

In order to evaluate the performance of the algorithms we con-
sider the following metrics:

• Mean response time of the D-requests, which is the sum of
the request waiting time (in a queue) and its service time.
For a D-request the service time is the sum of the request’s
seek, rotation, and transfer time.

• Fairness index, which is given in equation (2) and it is an-
alytically defined in [13]. This index is generally given by
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Figure 1. Mean response time for N = 25.

the formula (E[X])2/(E[X2]), where X is a random vari-
able, and intuitively it is a further normalization than that in
the squared coefficient of variation of X. Its usefulness is
that it takes values between 0 and 1. An algorithm is fairer
as its fairness index becomes closer to 1.

Fairness index = (
∑n

i=1 Xi)
2

N · ∑n
i=1 X2

i

, (2)

where Di is the response time of a single request and N is the
number of serviced requests.

We note that the fairness index just like the mean response
time are of no value for C-requests since the algorithms guar-
antee the performance requirement of continuous objects by
just serving all C-requests in the round. However it is a very
important performance metric when we consider D-requests
which can be characterized as best-effort requests.

3.3. Performance comparison of algorithms

We compare the performance of the above scheduling algo-
rithms. All algorithms prevent glitches (all C-requests are
completed before the end of the round). The round’s dura-
tion is set to 1 sec. In figure 1 we present the simulation re-
sults for the mean response time of D-requests for different
arrival rates when N = 25. Serving 25 C-requests per round
according to the SCAN algorithm and without intermixing
C-requests in intervals between successive C-requests, con-
sumes about 45% of the total round time.

Figure 1 shows that generally OPS algorithms outperform
TPS algorithms except OPS:FAMISH which is focused in pro-
viding fairness among D-requests at the cost of response
time. This result was expected since TPS algorithms force
D-requests to wait until the end of the C-period. However we
observe that TPS:SCAN/ SCAN

CI-OPT(6)
performs significantly bet-

ter than TPS:SCAN/SCAN and it’s performance is comparable to
OPS algorithms for low and medium D-request arrival rates.
This emphasizes the usefulness of clustering and hierarchi-
cal scheduling. Among OPS algorithms OPS: SCAN

CI-OPT(6)
per-

forms better than OPS: SCAN
CI-SPTF as λ increases since in each

cluster belong more D-requests and there is bigger difference
between the optimal and the greedy schedule produced by the
two algorithms, respectively.

In figure 2 we show the results for the fairness index.
Due to the hierarchical nature of the algorithms, improve-
ments in mean response time does not occur at the cost
of fairness. While the lower level scheduler performs lo-
cal optimizations in order to reduce latency, the higher-level
scheduler favors fairness. OPS:FAMISH which is focused in
providing fair schedules is as expected the fairer algorithm
but for heavy workloads it leaves a considerable amount of
D-requests without service at the end of each round. The gen-
eral behavior of the algorithms remains the same when we
consider different workloads (i.e., for N = 15 C-requests per
round; we omit the presentation for space reasons).

4. Clustering properties and algorithms

4.1. Motivation

The performance results presented in the previous section
clearly show the performance benefits that clustering intro-
duces. In the hierarchical algorithms described in section 2
we constructed clusters using the notion of C-interval. In this
section we study the effects of several clustering parameters
and we develop novel clustering techniques that we later ap-
ply to the proposed hierarchical algorithms in order to im-
prove their performance further.

4.1.1. Elements of a good clustering method
We investigate the importance of two factors in the construc-
tion of clusters. The first factor is the number of requests that
a cluster contains and the second is the size of a cluster, meas-
ured in cylinders on the disk surface. We constructed several
clusters with different sizes in requests and in cylinders and
we measured the mean response time of the D-requests (a) us-
ing the OPT algorithm to serve requests within the cluster,
and (b) using the SCAN algorithm to serve requests within
the cluster. In the results presented in figure 3 we show the
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Figure 2. Fairness of algorithms for N = 25.

Figure 3. Efficiency of the OPT against SCAN.

% improvement in mean response time of the schedule pro-
duced by OPT against the schedule produced by SCAN.

For a specific cluster size in cylinders, we observe that per-
formance improves as the number of requests that it contains
increases. For a specific number of requests in a cluster, per-
formance is better when the cluster size in cylinders is small.
A good clustering method would be a method that would cre-
ate compact clusters, i.e., small disk intervals with as many
requests as possible.2

4.2. Alternative clustering techniques

Based on the above remarks we propose two clustering tech-
niques, which attempt to improve the efficiency of the hierar-
chical scheduling algorithms presented in section 2, by trying
to create compact clusters.

4.2.1. Clustered requests
We name the first technique clustered requests. According
to this technique clusters are constructed as follows. A scan
direction is initially determined and requests are inserted into
the cluster until it contains a maximum number of requests

(M requests). Parameter M is a design, tunable parameter.
This technique is not concerned about the size of the cluster
in cylinders but only about the number of requests that the
cluster contains.

4.2.2. Clustered cylinders
We name the second technique clustered cylinders. Unlike
the previous method where the size of the clusters (meas-
ured in cylinders) was completely ignored, in this clustering
scheme it is an important design parameter. Particularly, in
this scheme, requests are inserted into the cluster according
to a scan direction until (a) the cluster extends up to a spe-
cific cylinder range (T cylinders), or (b) the cluster contains
a maximum number of requests (M requests). Parameters T

and M are the design parameters of this technique.
We will examine two algorithms that use the clustering

techniques described above: The first is OPS: SCAN
CLUST-REQ(6)

which is a hierarchical scheduling algorithm that (a) con-
structs clusters according to “clustered requests” (b) serves
clusters using SCAN, and (c) serves requests inside clus-
ters using the OPT(6) algorithm. The second algorithm is
OPS: SCAN

CLUST-CYL(6|1000)
which is similar with OPS: SCAN

CLUST-REQ(6)
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Figure 4. Mean response time for N = 25.

Figure 5. Fairness of algorithms for N = 25.

but constructs clusters according to “clustered cylinders” that
are at most 1000 cylinders wide or they contain at most 6 re-
quests.

4.3. Performance results

The disk and data characteristics are the same with these used
in section 3. We compare all the proposed clustered schedul-
ing algorithms against one another and against a traditional
flat scheduling method SPTF (which we have found to per-
form best among all flat scheduling algorithms). In order to
ensure that SPTF prevents glitches (i.e., that all C-requests are
completed before the end of the round) we serve a D-request
only if the service of this request leaves enough time to per-
form a SCAN for all the remaining C-requests. In figures 4
and 5 we present the simulation results for the mean re-
sponse time of D-requests and the fairness index of the algo-
rithms, respectively, for different arrival rates when N = 25
C-requests per round.

A first note that we can make looking at figures 4 and 5
is that OPS: SCAN

CLUST-REQ(6)
and OPS: SCAN

CLUST-CYL(6|1000)
have al-

most identical performance in both mean response time and

fairness. This is not surprising as the compactness of the
disk (which is the target of clustering) depends only on the
arrival rate of requests and not on the two clustering tech-
niques. Specifically, for high D-request arrival rate, requests
are close to each other and parameter M is the one that de-
termines the requests that are inserted in the clusters for both
algorithms. Consequently both algorithms construct clusters
using the same criterion thus they have similar performance.
For low D-request arrival rates, the distance between requests
is larger and “clustered requests” construct clusters with six
requests spread in a relatively large disk interval. On the other
hand “clustered cylinders” constructs small clusters with a
relatively small number of requests. This means that for low
D-request arrival rate, OPS: SCAN

CLUST-REQ(6)
calculates an ineffi-

cient (because of its large size in cylinders) optimal schedule
for 6 requests while OPS: SCAN

CLUST-CYL(6|1000)
calculates a more

efficient (because of it’s small size) optimal schedule but for
fewer requests.

A second important point is the benefits of the applica-
tion of the new clustering techniques on our hierarchical al-
gorithms. The reason for the significant improvement is that
C-intervals, as described in section 2, are generally larger than
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Figure 6. Mean response time for N = 35.

Figure 7. Fairness of algorithms for N = 35.

the clusters of the new simple techniques. As expected, the
compactness achieved with the two new clustering techniques
pays off.

Finally comparing the clustered scheduling algorithms
with SPTF, we observe that generally SPTF has lower mean
response time while the proposed clustered scheduling algo-
rithms are fairer. However, it is important to note that the dif-
ference in the mean response time is not significant, especially
for high D-request arrival rates. While in fairness, the pro-
posed algorithms clearly outperform SPTF and become up to
30% fairer for high arrival rates (i.e., λ = 65 req./round). Un-
fairness is one of the main reasons that SPTF is not practically
used by disk drive manufacturers. Our algorithms achieve to
have mean response time comparable to that of SPTF while
they are significantly fairer.

5. Sensitivity study on the rapidly developing disk
technology

We now make a projection for 4 years of seek, rotational, and
transfer time improvements in order to see how the algorithms

are expected to perform in the near future. In our projection
we assume 8% annual improvement for the seek cost, 20% for
the rotational speed and at least 20% for the transfer rate. We
also assume 50% annual improvement of CPU speed, which
is related to the computational overhead for the computation
of an optimal schedule in a cluster. In figures 6 and 7 we
present the simulation results for N = 35 C-requests per
round, which according to the SCAN algorithm corresponds
to the 35% of the total round time.

Comparing figures 6 and 7 with figures 4 and 5 we ob-
serve an improvement in the performance, attributed to the
new clustering techniques, which can be very significant in
heavier loads. While the performance of the algorithms in
mean response time is similar for low and medium workloads,
hierarchical algorithms appear to be considerably fairer. For
heavier loads the clustered scheduling algorithm outperforms
the flat scheduling algorithm. Particularly OPS: SCAN

CLUST-REQ(6)

appears to have 15% lower mean response time than SPTF
while it is 30% fairer. This drastic improvement should be ex-
pected because as the system’s load becomes heavier the com-
pactness of the clusters increases and there is a better chance
for the local optimization to work efficiently.
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6. Conclusions

We have considered the problem of disk scheduling for
mixed-media workloads. Despite the fact that such workloads
are typical of many applications, this problem has not re-
ceived the attention it deserves by related research efforts. We
have presented several algorithms, which aim to ensure the
hiccup-free display of continuous objects, while ensuring low
average response times and fairness for discrete data requests.
We have contributed a taxonomy of related algorithms, or-
ganized along two key dimensions: the number of separate
scheduling phases and the number of scheduling levels.

We have implemented the proposed algorithms in a de-
tailed simulation testbed. We have shown that the hierarchical
scheduling algorithms we propose can offer drastic improve-
ments, up to several hundred percent, in the average response
times of D-requests. Also, these impressive response times
do not occur at the cost of unfair D-request schedules. The
key to reconciling the goals of achieving response time opti-
mizations and fair schedules is the hierarchical nature of the
proposed algorithms. At the higher level, the algorithm with
which the clusters are served can be chosen to account for
fairness and efficiency. At the lower level, algorithms can be
chosen which allow the local optimization of response times.

Another key contributing factor to the success of the pro-
posed algorithms is the selection of appropriate clustering
methods, which define the clusters. We proposed simple clus-
tering methods, which improve the response time behavior
significantly while also improving fairness.

Finally we have studied the performance of the algorithms
in future disk drives, using standard technology projections.
This study shows that the proposed clustered scheduling algo-
rithms are expected to perform comparatively even better in
the future, outperforming flat scheduling algorithms in both
response times and fairness.

Ongoing work includes the design and evaluation of al-
ternative higher-level scheduling algorithms and efficient
heuristics for TSP which can avoid the upper bound of six
D-requests per cluster and replace the OPT(6) algorithm.
Also, we plan to investigate to what extent similar hierar-
chical algorithms, in which the higher-level algorithms effec-
tively avoid fairness problems introduced by the lower-level
optimizations, are suitable for file-system or database-system
disk workloads.
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Notes

1. Sorting can be omitted in the implementation in order to reduce the com-
plexity of the algorithm. It is mentioned because it simplifies the descrip-
tion of the algorithm.

2. The use of the OPT method on clusters puts an upper bound to the number
of requests that a cluster can contain.
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