

High Performance Data Broadcasting: A
Comprehensive Systems� Perspective

Peter Triantafillou, R. Harpantidou, M. Paterakis

Dept. of Computer Engineering
Technical University of Crete

peter@ced.tuc.gr

roula@telecom.tuc.gr
pateraki@telecom.tuc.gr

Abstract. Broadcast scheduling algorithms have received a lot of attention
recently, since they are important for supporting mobile/ubiquitous computing.
However, a comprehensive system's perspective towards the development of
high performance broadcast servers is very much lacking. With this paper we
attempt to fill this gap. We contribute four novel scheduling algorithms that
ensure the proper interplay between broadcast and disk scheduling in order to
attain high performance. We study comprehensively the performance of the
broadcast server, as it consists of the broadcast scheduling and the disk
scheduling, algorithms. Our results show that the contributed algorithms
outperform the algorithms, which currently define the state of the art.
Furthermore, one of our algorithms is shown to enjoy considerably higher
performance, under all values of the problem and system parameters (such as
the skew of access distributions, the system load, the data object sizes, cache-
and disk-intensive workloads, etc.). An important conclusion of this study is
that broadcast scheduling algorithms have only a small effect on the overall
broadcast system performance, a fact that necessitates the refocusing of related
research.

1. Introduction

Mobile computing and wireless networks are quickly evolving technologies that are
making ubiquitous computing a reality. As the population of portable wireless
computers increases, mechanisms for the efficient transmission of information to such
wireless clients are of significant interest. Such mechanisms could be used by a
satellite or a base station to disseminate information of common interest. Many
emerging applications involve the dissemination of data to large populations of
clients. Examples of such dissemination-oriented applications include information
dispersal systems for volatile time-sensitive information such as stock prices and
weather conditions, news distribution systems, traffic information systems, electronic
newsletters, software distribution, hospital information systems, public safety
applications, and entertainment delivery.

K.-L. Tan et al. (Eds.): MDM 2001, LNCS 1987, pp. 79-90, 2001.
© Springer-Verlag Berlin Heidelberg 2001

mailto:peter@ced.tuc.gr
mailto:roula@telecom.tuc.gr
mailto:pateraki@telecom.tuc.gr

80 Peter Triantafillou et al.

Many of the dissemination-oriented applications we mention above, have data
access characteristics that differ significantly from the traditional notion of client-
server applications as embodied in navigational web browsing technology. A fairly
limited amount of data is distributed from a small number of sources to a huge client
population (potentially many millions) that have overlapping interests, meaning that
any particular data item is likely to be distributed to many clients. Data broadcasting
is considered to be an efficient way, in terms of bandwidth and energy, for the
distribution of such information for both wireless and wired communication
environments and has been extensively studied (see [11], [12], [14] and [15]).
Furthermore, broadcast transmission compared to traditional unicast can be much
more efficient for disseminating information, because unicast by having to transmit
every data item, often identical, at least once for every client who requests it, creates
scalability problems as the client population increases. Thus, the main advantage of
broadcast delivery is its scalability: it is independent of the number of clients the
system is serving. Much of the communication technology that has enabled large-
scale dissemination supports broadcast, and in some cases, is primarily intended for
broadcast use. For instance, direct broadcast satellite providers, and cable television
companies (through the use of high-bandwidth cable modems) are now, or will soon
be, capable of supporting multi-megabit per second data broadcast. Intel has also been
broadcasting data along with normal TV signals, [9].

1.1 Related Work

The problem of determining an efficient broadcast schedule for information
distribution systems has been extensively studied in the past ([1], [2], [3], [4], [5],
[10], [11], [12], and [14]). In [1] the authors propose the RxW scheduling algorithm
which calculates the product of the number of outstanding Requests (R), times the
Wait time (W) of the oldest outstanding request for all data items corresponding to the
requests pending in the broadcast server queue. The data item with the highest
product value is chosen for broadcast. Therefore, RxW broadcasts a data item either
because it is very popular (high R value) or because it has at least one long-
outstanding request. It provides a balanced treatment of requests for both popular
(hot) and not-so-popular (cold) items.

In [2], Acharya and Muthukrishman, study the scheduling problem arising in on-
demand environments for applications with data requests of varying sizes and they
introduce an alternative to the response time of a requests metric- the stretch of a
request, which seems better suited to variable-sized data items. They present an
algorithm called MAX based on the criteria of optimizing the worst case stretch of
individual requests. In [3] and [16] memory is assumed available at each user. The
management of this memory was considered in order to reduce the mismatch between
the push-based broadcast schedule and the user�s access pattern. In [4], the authors
consider the problem of scheduling the data broadcast such that the access latency
experienced by the users is minimized. Push-based and pull-based systems are
considered. In [5], algorithms for determining broadcast schedules in asymmetric
environments that minimize the wait time are considered. Variations of those
algorithms for environments subject to errors, and systems where different clients
may listen to different number of broadcast channels are also considered.

 High Performance Data Broadcasting 81

1.2 Problem Formulation and System Model

The abundance of dissemination-based applications caused the rapid development of
scheduling algorithms for data broadcast. All such algorithms attempt to select which
item to broadcast in order to improve performance. The root implicit or explicit
assumption of existing scheduling algorithms is that the data items are immediately
available in the broadcast servers� main memory, (see [1], [2], [4], [5], [10], and the
references therein). This assumption ignores the fact that in many cases data items
must be retrieved from secondary storage before they can be broadcasted. They also
typically ignore the existence of the broadcast server�s cache and the related cache
management issues. By ignoring these issues, such scheduling algorithms when used
in real systems can cause significant degradation of the broadcast efficiency, or at the
very least the reported results, regarding the efficiency of proposed broadcast
scheduling algorithms are misleading. In our paper, we take into account the fact that
broadcast scheduling, disk scheduling, and cache management algorithms affect the
performance of each other and the overall performance of the broadcast server.

With this paper we put forward a comprehensive study from a systems�
viewpoint of the problem of pull-based broadcast scheduling. We consider a
broadcast server with the architecture shown in Figure 1. All newly generated client
requests enter into the broadcast server queue. The requests may need service from
the disk server or alternatively, when cache memory exists, the data items may be
found in the cache (i.e., they had been retrieved earlier from disk) and they are
forwarded directly to the transmitters� queue. From the transmitters� queue all data
items are transmitted through the communication channel, reaching the clients that
had made the corresponding requests. When a data item is broadcasted, all requests
for the particular data item are satisfied simultaneously regardless of the time of their
arrival.

Broadcast
Server

 Client
 Requests

Disk
 Server

Cache
Server

Transmitter
Server

Fig. 1. Broadcast Server Architecture

The system we study consists of a large and possibly time varying client
population that requests data items from an information source equipped with a data
broadcasting capability. Clients use two independent networks for communicating
with the server: an uplink channel for sending requests to the server, and a �listen
only� downlink channel for receiving data from the server. When a client needs a data
item (e.g., a database object) that cannot be found locally, it sends a request for the
item to the server. Client requests are queued up (if necessary) at the broadcast server
upon arrival. Requests that correspond to the same item are grouped together forming
a multi-request. In the remainder of the paper, we refer to such multi-requests as
requests.

82 Peter Triantafillou et al.

We make the following assumption. First, we assume, for simplicity reasons
only, that data items are of fixed-length (e.g., database objects). Second, we assume
that clients continuously monitor the broadcast channel after they send a request to the
server and we do not consider the effects of transmission errors, so that all clients
waiting for a data item receive it when is broadcasted by the server. We ignore the
delay for sending requests via the client-to-server uplink, which we expect to be small
compared to the latency of obtaining broadcast items from moderately or heavily
loaded servers.

1.3 Overview of Contributions

Our study is comprehensive in that it considers the interplay between the broadcast
scheduling algorithm and the disk scheduling algorith. The contributions are:

• We propose mechanisms that ensure the required interplay of the above algorithms

in order to ensure high performance. These mechanisms consist of four novel
scheduling algorithms.

• We show that without such mechanisms the algorithms for broadcast scheduling
found in the literature can be of little practical use.

• We conduct a detailed performance study: we quantify the expected performance
under different values of the problem parameters and we identify the critical
mechanisms that limit performance under different configurations.

1.4 The Remainder of the Paper

The remainder of the paper is organized as follows. In Section 2, we describe the
scheduling algorithms ADoRe, FLUSH, OWeiST, RxW/S that we propose. In Section
3, we present the simulation model, the performance metrics and the performance
behavior of these algorithms. In Section 4, we introduce a novel cache management
mechanism and we present performance results. In Section 5, we include the
transmitter and we present performance results for the FLUSH algorithm. Finally, we
conclude this paper in Section 6.

2. Broadcast and Disk Scheduling Algorithms

The broadcast scheduling algorithm that we have chosen is the exhaustive RxW
algorithm, which appears to be a practical, low-overhead scalable scheme that
requires no a-priori advanced knowledge (such as the access probabilities of items),
[1]. Our group has performed performance studies comparing RxW with other
algorithms (e.g., the algorithms in [2], and [5]), and we have found it to have the best
performance. These are the reasons we have chosen it as broadcast scheduling
algorithm.

For the disk scheduling we selected the C-LOOK algorithm [18], unless stated
otherwise. The C-LOOK algorithm sorts data items to be retrieved from the disk in

 High Performance Data Broadcasting 83

ascending order of their cylinder position on the disk. The read-write head is only
moved as far as the last request in each direction. It services requests from the service
queue as it reaches each cylinder, until there are no requests in the current direction.
Then, it immediately returns to the first requested item of the other end, without
servicing any requests on the return trip, and repeats the process.

In this section, we disregard the existence of a cache and we assume that each
requested data item must be retrieved from the secondary storage. This is done for
two reasons: first in order to measure the impact of the disk system in the
performance of the server, and second, because in applications where the data items
will be very large and the distribution of the requests to data items will not be skewed,
the cache will have little impact. Furthermore, in some system configurations the
cache size might be quite small (e.g., as an extreme example, consider a broadcast
server on a network attached disk which has a cache size that is a negligible
percentage of the database size).

2.1 Combining Separate Broadcast and Disk Scheduling Algorithms

The first of the algorithms we present below extend and combine the RxW broadcast
scheduling algorithm with a disk scheduling algorithm through various mechanisms.
In the literature ([1]), RxW is described as being applied after the transmission of the
previously selected item from the broadcast queue has been completed. The second
uses FCFS, as broadcast scheduling algorithm. The algorithms depend on the C-
LOOK disk scheduling algorithm.

2.1.1 The ADoRe Algorithm: Active Disk on Requests
The ADoRe is a fairly simple algorithm. When the disk becomes idle, K or fewer
requests (corresponding to the case when the broadcast queue does not contain K
requests) are directed from the broadcast server queue to the disk scheduler queue to
be served. If there are more than K outstanding requests in the broadcast server queue,
the RxW algorithm is applied and a group of K requests with the highest RxW values
are directed to the disk queue.

A straightforward implementation of the RxW algorithm would imply that each
time it is called the broadcast scheduling algorithm forwards a single request to the
disk system and once the item is retrieved and broadcasted, RxW is called again to
pick the next item, and so on. This, obviously, results in poor disk system
performance. The ADoRe algorithm attempts to avoid this shortcoming by using
RxW to select a group of K requests. The parameter K allows the formation of groups
of requests, in contrast to the straightforward implementation of the RxW algorithm
mentioned before. Intuitively, the ADoRe algorithm tries to keep the disk system as
highly utilized as possible, while on the other hand it tries to reduce the average disk
service time by forwarding a group of requests to be served on which the disk
scheduling algorithm seek optimization will produce better results. For example, a C-
LOOK sweep with 10 requests served (i.e., when K=10) will take less time than
running the RxW algorithm 10 times picking one request at a time and giving it to the
disk. Therefore, if K equals to 1 the ADoRe algorithm resembles the straightforward
implementation of the RxW algorithm since it directs one request from the broadcast

84 Peter Triantafillou et al.

server queue by applying the RxW algorithm, to the disk server queue every time the
broadcasting of the previously selected data item is completed.

2.1.2 The FLUSH Algorithm
The requests in the disk queue are served using the C-LOOK algorithm. The FLUSH
algorithm manipulates differently the requests on the broadcast server. Every time the
disk finishes the service of a single request, all the requests in the broadcast server
queue are flushed to the disk server and incorporated into the C-LOOK lists.

2.2 Amalgamating Broadcast and Disk Scheduling Algorithms

The amalgamated algorithms combine information available at the broadcast server
and at the disk server.

2.2.1 The OWeiST Algorithm: Optimal Weighted Service Time
The OWeiST algorithm attempts to improve performance in two ways. First, it
exploits information available at the broadcast server and at the disk server. Second, it
employs a different disk scheduling algorithm, which for larger groups of requests,
introduces further optimizations.

According to the OWeiST algorithm whenever the disk becomes idle, K or fewer
requests as in the AdoRe algorithm, are being selected from the broadcast queue and
forwarded to the disk queue. The service of the requests is being carried out in such
order that the sum of the products R times Disk Service Time of the requests is kept
minimum. The operation of the algorithm is as follows. We maintain a graph of K
requests. The edge connecting two requests ri and rj has a label RjxSj where Rj is the
number of requests in the broadcast queue for item j and Sj represents the disk access
cost to access item j, given that the previously retrieved item from the disk was item i.
The disk access cost contains both the seek time from the cylinder of item i to the
cylinder of item j, plus the rotational delay necessary to access item j once the disk
head is positioned on j�s cylinder, plus the time to retrieve item j from the disk. The
algorithm computes all possible permutations for the K requests and selects the
optimal permutation that gives the smallest total weighted cost. Note that, obviously,
this is analogous to computing a solution to the Traveling Salesman Problem (TSP).
However, by bounding the value of the parameter K we can control the overhead
involved in computing the optimal service schedule. Notice that, when K equals 1
OWeiST is identical to ADoRe with K equal to 1.

2.2.2 The RxW/S algorithm
We also propose the amalgamated algorithm RxW/S, where S is the disk service time,
which takes into account information of the broadcast scheduling algorithm (i.e., R
and W for every requested data item) and the disk service overhead. It is an one step
algorithm, which is being activated whenever the disk becomes idle and selects a
request from the broadcast queue to be serviced from the disk. The selected request, is
the one that has the higher value of the fraction (RxW)/S. In this algorithm there is no
grouping of requests because requests are directed to the disk one at a time. The

 High Performance Data Broadcasting 85

selection of the data item to be broadcasted, favors items of high RxW value and low
disk access times.

3. Performance Study

The performance of the algorithms has been studied through simulation. The
simulations were executed on a Pentium II PC, 400MHz. Each run simulates the
transmission of one million data items. We observed, that by simulating 1,000,000
transmitted data items, we were able to estimate with accuracy the steady-state
algorithms performance.

Table 1 shows the
parameter setting for the
simulated disk system. We
assume that the database
consists of 10,000 16KB (or
alternatively 200KB data
items).

Disk Characteristics
Cylinders 6,900
Surfaces 12
Sector Size 512
Revolution Speed 10,000 RPM
Number of Zones 20
Average Transfer Rate 12 MBps

Table 1.

3.1 Simulation Model

We developed a model, as depicted in Figure 1. We used a Request Generator, which
generates a stream of requests according to a Poisson arrival process. The request
arrival rates we used in our simulations vary between 10 and 500 requests per second.

Requests are generated from the Request Generator and then they enter the
broadcast server queue. By the application of the algorithms in section 3, requests are
directed to the disk server queue where the corresponding data items are retrieved
from disk and are then forwarded to the transmitters� queue (see paragraph 3.3), or in
the presence of cache memory the data items that are located in the cache are sent
directly to the transmitters� queue (see paragraph 4.2). When a cache exists, all the
data that are forwarded to the transmitters� queue are first moved from disk to the
cache (provided that they are not already located in the cache). The transmitter
conveys all the data items to the clients through the channel link. Finally, the statistics
collector records all relevant statistics in order to measure the performance.

In our simulation, it is assumed that the request probabilities of all data items
follow a Zipf distribution. The Zipf distribution may be expressed as follows:

pi = c (1/i)θ, 1 ≤ i ≤M (1)

where c=1/ ∑
=

M

i
i

1

)/1(θ is a normalizing factor, and θ is a parameter referred to as the

access skew coefficient. The distribution becomes increasingly �skewed� as θ
increases, [5], [6]. We will report results for two values for θ; θ = 0 (uniform
distribution), and θ=1.17 (highly skewed access distribution).

86 Peter Triantafillou et al.

3.2 Performance Metrics

In client-server information systems, the user response time, namely the time between
the arrival of the request at the broadcast server and its service, is one of the most
important factors for evaluating the systems� performance. A metric that gives an
overall view of the response time of all clients in the system is the mean response
time. As is remarked in [6], it is natural in the real world some users� demand patterns
to completely differ from the overall demand pattern and their own response time may
be much worse than the overall mean. In this paper, we address this problem by
adopting as a performance metric an index of fairness that always lies between 0 and
1, [7]. We have chosen this metric over the square coefficient of variation since the
fairness index is a further normalization giving a number between 0 and 1. This
boundedness aids intuitive understanding of the fairness index. For example, an
algorithm with a fairness index of 0.10 means that it is unfair to 90% of the users, and
an algorithm with a fairness index of 0.90 means that is fair to 90% of the users. The
fairness index, if n contending users are in the system such that the response time of
the request of the ith user is denoted by xi, is defined as follows:

f(x) =
[]

][
][
2

2

xE
xE

 =

∑

∑

=

=









n

i
i

n

i
i

xn

x

1

2

2

1 , xi ≥0

(2)

where x is the random variable denoting the response time of a client�s request. We
have also considered the ratio of the standard deviation to the mean response time of a
request, (i.e., the square root of the square coefficient of variation), as an additional
fairness indicator.

3.3 Performance Results

The results we present below are only a small indicative sample of the results we have
obtained since we cannot present them all, due to the space limitations. We conducted
a number of experiments under different combinations of the arrival rate, the grouping
parameter K (for algorithms ADoRe and OWeiST), and the access skew coefficient θ.
The two primary performance metrics, the mean response time and the fairness index,
are plotted versus λ, for different values of the parameter K. The CPU overhead for
the RxW algorithm and for calculating the optimal permutation of the OWeiST
algorithm is not included in the mean response time results1

Figures 2 through 5, present the results under the assumptions of no cache
memory available and of infinite broadcast channel speed. The response time of a

1 The CPU time (overhead) of the application of the RxW algorithm on the broadcast server queue was

estimated to be less than 1ms and the corresponding time for the disk scheduling mechanism of the
OweiST algorithm for figuring out the optimal permutations when K equals 5 was estimated to be
approximately 1ms. These estimations were based on experiments executed a Pentium II PC, 400MHz.

 High Performance Data Broadcasting 87

client�s request corresponds to the time between the arrival of the request at the server
and the retrieval of the corresponding data item from the disk.

Figures 2 through 4 present the mean response time of the proposed scheduling
algorithms, ADoRe, FLUSH, OWeiST, and RxW/S. As we mentioned in section 2,
the ADoRe algorithm with K equal to 1 resembles the RxW algorithm. Figure 2,
presents the mean response time (in milliseconds) versus the arrival rate λ, for θ=1.17,
16KB data item size, and K=1 (which means that each group of the requests contains
1 element). We observe that as the aggregate request arrival rate increases beyond 50
(λ>50), the mean response time of the ADoRe, and the OWeiST is sharply increased,
reaching the value of 590ms for arrival rate λ=120 requests/sec. On the contrary, the
mean response time is maintained low for the FLUSH, and the RxW/S algorithms,
with mean response time values less than 130ms for the RxW/S and less than 100ms
for the FLUSH, with arrival rate λ=120 requests/sec. This demonstrates that the latter
two algorithms perform considerably better. The same trend is observed for 200KB
data item size, as is shown in Figure 3. The difference in the mean response time is
due to the retrieval time from the disk of the 200KB data item, which is a multiple of
the corresponding time of the 16KB data items.

K=1, 16KB, θ=1.17

0

100

200

300

400

500

600

10 25 50 75 100 120
λ (requests/sec)

M
ea

n
R

es
po

nc
e

Ti
m

e
(m

s)

ADoRe FLUSH RxW/S OWeiST

K=1, 200KB, θ=1.17

0

500

1000

1500

2000

2500

3000

3500

4000

10 25 50 75 100
λ (requests/sec)

M
ea

n
R

es
po

nc
e

Ti
m

e
(m

s)

ADoRe FLUSH RxW/S OWeiST

Fig. 2. Fig. 3.

In Figure 4 the value of K increases to 5 and we notice similar behavior. Notice
that K refers only to ADoRe and OWeiST algorithms, while the curves of FLUSH
and RxW/S are the same as in Figure 2. OWeiST performs much better than before,
and the mean response time is similar to that of the FLUSH and the RxW/S for all λ
values examined. This improvement of the OWeiST was expected, since its
optimization (i.e., the calculation of the shortest path for visiting all K data items on
the disk in accordance to their popularity) introduces greater benefits as K increases.
ADoRe with K equal to 5 performs slightly better than with K equal to 1, because the
RxW algorithm forwards a group of requests to the disk and not just one at a time.

The improved performance of FLUSH over the other three algorithms, as λ
increases, shown in Figures 2 through 4 was expected since FLUSH forwards requests
to the disk server as they arrive, increasing the number of requests that are waiting to
be serviced in the disk queue. This gives the disk scheduling algorithm (C-LOOK) the

88 Peter Triantafillou et al.

chance to further optimize the disk access time. The OweiST algorithm cannot do that
since given the NP-Completeness of calculating the optimal schedule, the disk system
queue must be relatively small. The critical observation is that the broadcast server
must keep the disk server as busy as possible and this outweighs in importance any
improvement from the other disk scheduling algorithms.

Figure 5 shows the fairness index plotted versus the request arrival rate λ for the
case of 16KB data item size, and K equal to 1. We observe that FLUSH and RxW/S
have a fairness index above 70% even for increased arrival rates, while the fairness
indices of ADoRe and OWeiST drop abruptly. Even for 200KB data item sizes (due
to lack of space these results are not shown), FLUSH maintains a fairness index
around 70% when the fairness indices of the other algorithms drop well below 50%.

K=5, 16K objects

0

50

100

150

200

250

300

350

400

10 25 50 75 100 120
λ (requests/sec)

M
ea

n
R

es
po

nc
e

Ti
m

e
(m

s)

ADoRe FLUSH RxW/S OWeiST

K=1, 16KB, θ=1.17

50

60

70

80

90

10 25 50 75 100 120
λ (requests/sec)

Fa
irn

es
s

In
de

x
(%

)

ADoRe FLUSH RxW/S OWeiST

Fig. 4. Fig. 5.

As an additional fairness metric we have examined the ratio of the standard
deviation to the mean response time. FLUSH maintains the value of this ratio below
0.7 for all values of the arrival rate, and data item sizes we examined. We also
simulated the demand for data items using the Uniform distribution (θ=0). As
expected, the mean response time of all algorithms for θ=0, increases rapidly with
arrival rate increases (compared to the results in Figures 2, 3, and 4). This is due to
the decreasing possibility of serving more than one client by a single broadcast.
FLUSH, however, continues to perform best and has a fairness index above 65%.

4. Contributions and Concluding Remarks

Looking at related work for broadcasting scheduling, one can find several
interesting algorithms for deciding which data item to pick for broadcasting.
However, all these algorithms make the (implicit or explicit) assumption that the
chosen data item is immediately available to the transmitter for broadcasting. In a real
system this obviously does not hold. This fact begs the question of how all the basic
system components of a broadcast server�s system infrastructure should interact in
order to build high performance broadcast servers. With this paper we attempt to

 High Performance Data Broadcasting 89

address this question. We put forward a comprehensive study from a system�s
viewpoint of the problem of broadcast scheduling. Our study is comprehensive in that
it considers the interplay between the broadcast scheduling algorithms, the disk
scheduling algorithms, and the cache management algorithms.

We study the interplay between broadcast and disk scheduling algorithms, which
will be the critical performance issue in applications and system configurations where
the impact of caches will be secondary. We propose four novel scheduling algorithms,
the ADoRe, FLUSH, OWeiST, and RxW/S classified under two categories: those that
combine separate broadcast and disk scheduling algorithms and those that
amalgamate the information available at the broadcast queue and at the disk queue,
producing a single scheduling criterion. We study their performance in terms of mean
response time and their fairness under different values of the problem parameters
(system load, access distributions, object sizes, etc.).

The major conclusions of this work are:
In environments where the broadcast server depends heavily on the disk system,

(i.e., it is disk-intensive as opposed to cache-intensive) the critical issue is to design
mechanisms which ensure that the server keeps the disk system highly utilized and
allowing the disk scheduling algorithm to perform its optimizations. Our results show
that our FLUSH algorithm can outperform significantly other mechanisms, which are
based on either more efficient disk scheduling algorithms or on algorithms based on
combining information at the broadcast and the disk queues.

Our performance study has shown that the proposed algorithms namely, ADoRE,
FLUSH, OWeiST, and RxW/S can achieve significantly better performance than that
of the RxW algorithm (as it is straightforwardly implemented using the ADoRe (K=1)
mechanism) under a large variation of the values of the basic problem parameters
(e.g., access skew distribution, system load, object sizes, cache or disk intensive
workloads etc.). Furthermore, our results show that FLUSH, consistently outperforms
all others under all the above workload and system parameters, while being fair.

A conclusion worthy of special notice is that we have actually found that
�efficient� broadcast scheduling algorithms found in the literature have a negligible
impact. Specifically, if instead of employing the RxW algorithm at the broadcast
queue we employed FCFS scheduling the difference in the overall performance of the
broadcast system would barely be noticeable. Notice that, in the FLUSH algorithm,
every time we have an arrival, it is passed to the disk system. Viewed differently, this
implies that FLUSH essentially uses a FCFS scheduling at the broadcast queue. This
conclusion is a strong indication that the main attention of most related research
efforts needs to be refocused.

References

[1] D. Aksoy, M. Franklin, �Scheduling for Large-Scale On-Demand Data Broadcasting�, Proc.
IEEE InfoCom Conf., San Francisco, CA, 1998.

[2] S. Acharya, S. Muthukrishnan, �Scheduling On-demand Broadcasts New Metrics and
Algortihms�, Proc. ACM/IEEE Int. Conf. MobiCom �98, Dallas,October 1998.

[3] C. J. Su, and L. Tassiulas, �Joint Broadcast Scheduling and User�s Cache Management for
Efficient Information Delivery�, Int. Conf. MobiCom �98, Dallas,October 1998.

90 Peter Triantafillou et al.

[4] C.-J. Su and L. Tassiulas, �Broadcast Scheduling for Information Distribution�, Proc. IEEE
INFOCOM Conf.,CA, 1997.

[5] N. H. Vaidya and S. Hammed, �Data Broadcast in Asymmetric Wireless Environment�,
Proc. of Workshop on Satellite-based Information (WOSBIS), New York, November 1996.

[6] S. Jiang and N.H. Vaidya, �Response Time in Data Broadcast Systems: Mean, Variance and
Trade-Off �, Proc. of Workshop on Satellite-based Information (WOSBIS), Texas, October
1998.

[7] R. Jain, D-M. Chiu, W.R Hawe, �A Quantitative Measure of Fairness and Discrimination
for Resource allocation in Shared Computer Systems�, DEC-TR-301, September 1984.

[8] E.J. O�Neil, P.E. O� Neil and G. Weikum, �An Optimality Proof of the LRU-K Page
Replacement Algorithm�, Journal of the ACM, Vol. 46, January 1999.

[9] Intel Corporation, Intel Intercast Technology, http://www.intercast.com, 1997.
[10] S. Acharya, M. Franklin, S. Zdonik, �Balancing Push and Pull for Data Broadcast�, Proc.

ACM SIGMOD Conf., Tuscon, Arizona, May 1997.
[11] K. Stathatos, N. Rousopoulos, and J.S. Baras, �Adaptive Data Broadcast in Hybric

Networks�, in Proc. VLDB, 1997.
[12] H. Dykeman, M. H. Ammar, and J. Wong, �Scheduling algorithms for videotext systems

under broadcast delivery�, in Proc. International Conference of Communications, pages
1847-1851, 1996.

[13] M. H. Ammar and J. W. Wong, �On the Optimality of Cyclic Transmission in Teletext
Systems�, IEEE Transaction on Communication, COM-35(1):68-73, January 1987.

[14] S. Acharya, M. Franklin, S. Zdonik, �Dissemination-based Data Delivery Using Broadcast
Disks�, IEEE Personal Communications, 2(6), 1995.

[15] J. W. Wong, �Broadcast Delivery�, in Proc. of IEEE, pp. 1566-1577, December 1988.
[16] M. H. Ammar, �Response Time ina a Teletext System: an Individual User�s Perspective�,

IEEE Trans. On Communications, COM-35(11):1159-1170, November 1987.
[17] R. Alonso, D. Barbara, H. Garcia-Molina, �Data Caching Issues in an Information

Retrieval System�, TODS 15(3):359-384(1990).
[18] B.L. Worthington, G.R. Ganger, and Y. Patt, �Scheduling algorithms for modern disk

drivers�, in Proc. of the 1994 ACM SIGMETRICS Conf., pages 241-251.

http://www.intercast.com/

	1. Introduction
	1.1 Related Work
	1.2 Problem Formulation and System Model
	1.3 Overview of Contributions
	1.4 The Remainder of the Paper

	2. Broadcast and Disk Scheduling Algorithms
	2.1 Combining Separate Broadcast and Disk Scheduling Algorithms
	2.2 Amalgamating Broadcast and Disk Scheduling Algorithms

	3. Performance Study
	3.1 Simulation Model
	3.2 Performance Metrics
	3.3 Performance Results

	4. Contributions and Concluding Remarks
	References

