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Abstract. Data broadcasting as a means of efficient data dissemination is a key technology facilitating ubiquitous computing. For this
reason, broadcast scheduling algorithms have received a lot of attention. However, all existing algorithms make the core assumption that
the data items to be broadcast are immediately available in the transmitter’s queue, ignoring the key role that the disk subsystem and the
cache management play in the overall broadcast system performance. With this paper we contribute a comprehensive system’s perspective
towards the development of high performance broadcast systems, taking into account how broadcast scheduling, disk scheduling, and
cache management algorithms affect the overall performance. We contribute novel techniques that ensure an efficient interplay between
broadcast scheduling, cache management, and disk scheduling. We study comprehensively the performance of the broadcast server, as it
consists of the broadcast scheduling, the disk scheduling, the cache management algorithms, and the transmitter. Our results show that the
contributed algorithms yield considerably higher performance. Furthermore, one of our algorithms is shown to enjoy considerably higher
performance, under all values of the problem and system parameters. A key contribution is the result that broadcast scheduling algorithms
have only a small effect on the overall system performance, which necessitates the definition of different focal points for efforts towards

high performance data broadcasting.
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1. Introduction

Mobile computing and wireless networks are quickly evolv-
ing technologies that are making ubiquitous computing a re-
ality. As the population of portable wireless computers in-
creases, mechanisms for the efficient dissemination of in-
formation to such wireless clients are of significant interest.
Such mechanisms could be used by a satellite or a base sta-
tion to disseminate information of common interest. Many
emerging applications involve the dissemination of data to
large populations of clients. Examples of such dissemination-
oriented applications include information dispersal systems
for volatile time-sensitive information such as stock prices
and weather conditions, news distribution systems, traffic in-
formation systems, electronic newsletters, software distribu-
tion, hospital information systems, public safety applications,
and entertainment delivery.

Many of the dissemination-oriented applications we men-
tion above, have data access characteristics that differ signif-
icantly from the traditional notion of client—server applica-
tions as embodied in navigational web browsing technology.
A fairly limited amount of data is distributed from a small
number of sources to a huge client population (potentially
many millions) that have overlapping interests, meaning that
any particular data item is likely to be distributed to many
clients. Data broadcasting is considered to be an efficient way,
in terms of bandwidth and energy, for the distribution of such
information for both wireless and wired communication envi-
ronments and has been extensively studied (see [1,9,18,22]).
Furthermore, broadcast transmission compared to traditional

* An abridged, earlier version of this paper, based only on preliminary de-
scriptions of the algorithms and results of sections 2 and 3 appeared in the
2nd Mobile Data Management Conference, MDMOI.

unicast can be much more efficient for disseminating infor-
mation, because unicast by having to transmit every data item,
often identical, at least once for every client who requests it,
creates scalability problems as the client population increases.
Thus, a key advantage of broadcast delivery is its scalability:
it is independent of the number of clients the system is serv-
ing. Much of the communication technology that has enabled
large-scale dissemination supports broadcast, and in some
cases, is primarily intended for broadcast use. For instance,
direct broadcast satellite providers, and cable television com-
panies (through the use of high-bandwidth cable modems) are
now, or will soon be, capable of supporting multi-megabit per
second data broadcast. Intel has also been broadcasting data
along with normal TV signals [13].

1.1. Related work

Broadcasting as a mean of efficient data dissemination is re-
ceiving increasingly higher attention [8,11,17]. The problem
of determining an efficient broadcast schedule for informa-
tion distribution systems, in particular, has been extensively
studied in the past [1-4,9,18-21]. In [4] the authors propose
the RxW scheduling algorithm which calculates the product
of the number of outstanding Requests (R), times the Wait
time (W) of the oldest outstanding request for all data items
corresponding to the requests pending in the broadcast server
queue. The data item with the highest product value is cho-
sen for broadcast. Therefore, RXW broadcasts a data item
either because it is very popular (high R value) or because it
has at least one long-outstanding request. It provides a bal-
anced treatment of requests for both popular (hot) and not-so-
popular (cold) items.
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Figure 1. Broadcast server architecture.

In [3], Acharya and Muthukrishman study the scheduling
problem arising in on-demand environments for applications
with data requests of varying sizes and they introduce an al-
ternative to the response time of a request metric- the stretch
of a request, which seems better suited to variable-sized data
items. They present an algorithm called MAX based on the
criteria of optimizing the worst case stretch of individual re-
quests.

Other efforts, such as the ones in [6,20] assume that cache
memory is available at each user. The management of this
memory was considered in order to reduce the mismatch be-
tween the push-based broadcast schedule and the user’s ac-
cess pattern. In [19], the authors consider the problem of
scheduling the data broadcast such that the access latency ex-
perienced by the users is minimized. Push-based and pull-
based systems are considered. Vaidya and Hammed [21] pro-
pose algorithms for broadcast schedules in asymmetric envi-
ronments that minimize wait time. Variations of those algo-
rithms for environments subject to errors, and systems where
different clients may listen to different number of channels
are also considered.

1.2. Problem motivation, formulation, and system model

The abundance of dissemination-based applications caused
the rapid development of scheduling algorithms for data
broadcast. All such algorithms attempt to select which item to
broadcast in order to improve performance. The root implicit
or explicit assumption of all existing broadcast scheduling al-
gorithms is that the data items to be broadcast are immediately
available to the transmitter (see, for instance, [2-4,19,21, and
the references therein]'). This assumption ignores the fact
that in many cases these data items must be retrieved from
secondary storage before they can be broadcasted. They also
typically ignore the existence of the broadcast server’s cache
and the related cache management issues. By ignoring these
issues, such scheduling algorithms when used in real systems
can cause significant degradation of the broadcast efficiency,
or at the very least the reported results, regarding the effi-
ciency of proposed broadcast scheduling algorithms, are mis-
leading. In our paper, we take into account the fact that broad-
cast scheduling, disk scheduling, and cache management al-

1 We have recently become aware [10] that the authors of the RxW tech-
nique are studying issues extending RxW with cache management and disk
accesses, with a focus to further improve the performance of RxW.

gorithms affect the performance of each other and the overall
performance of the broadcast server.

With this paper we put forward a comprehensive study
from a systems’ viewpoint of the problem of pull-based
broadcast scheduling. We consider a broadcast server with
the architecture shown in figure 1. All client requests enter
into the broadcast server queue. The requests may need ser-
vice from the disk server or alternatively, when cache mem-
ory exists, the data items may be found in the cache (i.e., they
had been retrieved earlier from disk) and they are forwarded
directly to the transmitters’ queue. From the transmitters’
queue all data items are transmitted through the communi-
cation channel, reaching the clients that had made the cor-
responding requests. When a data item is broadcasted, all re-
quests for the particular data item are satisfied simultaneously
regardless of the time of their arrival.

The system we study consists of a large and possibly time
varying client population that requests data items from an in-
formation source equipped with a data broadcasting capabil-
ity. Clients use two independent channels for communicat-
ing with the server: an uplink channel for sending requests to
the server, and a “listen only” downlink channel for receiv-
ing data. When a client needs a data item (e.g., a database
object) that cannot be found locally, it sends a request to the
server. Client requests are queued up at the broadcast server
upon arrival. Requests that correspond to the same item are
grouped together forming a multi-request. In the remainder
of the paper, we refer to such multi-requests as requests.

We make the following assumption. First, we assume, for
simplicity reasons only, that data items are of fixed-length
(e.g., database objects). Second, we assume that clients con-
tinuously monitor the broadcast channel after they send a re-
quest to the server and we do not consider the effects of trans-
mission errors, so that all clients waiting for a data item re-
ceive it when it is broadcasted by the server. We ignore the de-
lay for sending requests via the client-to-server uplink, which
we expect to be small compared to the latency of obtaining
broadcasted items from moderately or heavily loaded servers.

1.3. Overview of contributions

In our system model users may place requests about infor-
mation items directly to the broadcast server, and the broad-
cast scheduler works together with the disk scheduler and the
cache manager to decide which of the requests will be ser-
viced next. The study of the interplay of these components,
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which constitute the necessary infrastructure of a broadcast
server is, to the best of our knowledge, a novel contribu-
tion. Another novel contribution of the work in the paper is
the study of the end-to-end performance of a system that is
comprised of a broadcast scheduler, a cache manager, a disk
scheduler, and a transmission scheduler with a transmission
channel.

Our study is “comprehensive” in that it considers the in-
terplay between the broadcast scheduling algorithm, the disk
scheduling algorithm, and the cache management scheme.
The high level contributions of this work are:

e We propose mechanisms that ensure the required interplay
of the above algorithms in order to ensure high perfor-
mance. These mechanisms consist of four novel schedul-
ing algorithms and a cache management scheme.

e We show that without such mechanisms the algorithms for
broadcast scheduling found in the literature can be of little
practical use.

e We conduct a detailed performance study of the broadcast
system: we quantify the expected performance under dif-
ferent values of the problem parameters and we identify
the critical mechanisms that limit performance under dif-
ferent configurations.

1.4. The remainder of the paper

The remainder of the paper is organized as follows. In
section 2, we describe the scheduling algorithms ADoRe,
FLUSH, OWeiST, RxW/S that we propose. In section 3, we
present the simulation model, the performance metrics and
the performance behavior of these algorithms. In section 4,
we focus on cache management issues, we discuss cache re-
placement algorithms, and we present performance results for
the algorithms of section 2 when used in conjunction with the
cache replacement algorithms. We also present results regard-
ing the efficiency of the cache replacement algorithms. In sec-
tion 5, our focus includes the transmitter and we present the
relevant performance results. Finally, we conclude this paper
in section 6.

2. Integrating broadcast and disk scheduling

The broadcast scheduling algorithm that we have chosen from
the related literature is the exhaustive RxW algorithm, which
appears to be a practical, low-overhead, scalable scheme that
requires no a priori advanced knowledge (such as the access
probabilities of items, etc.) [4]. Our group has performed
performance studies comparing RxW with other algorithms
(e.g., the algorithms in [3,21]), and we have found it to have
the best performance. These are the reasons we have chosen
it as the basic broadcast scheduling algorithm.

For disk scheduling we selected the C-LOOK algorithm,
which has been found to have very good performance [23],
unless stated otherwise. The C-LOOK algorithm sorts data
items to be retrieved from the disk in ascending order of their
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cylinder position on the disk. The read—write head is only
moved as far as the last request in each direction. It services
requests from the service queue as it reaches each cylinder,
until there are no requests in the current direction. Then, it
immediately returns to the first requested item of the other
end, without servicing any requests on the return trip, and
repeats the process.

In this section, we disregard the existence of a cache and
we assume that each requested data item must be retrieved
from the secondary storage. This is done for two reasons:
first in order to measure the impact of the disk subsystem
in the performance of the server, and second, because in ap-
plications where the data items will be very large and/or the
distribution of the requests to data items will not be skewed,
the cache will have little impact. Furthermore, in some sys-
tem configurations the cache size might be quite small. Con-
sider, as an example, a broadcast server running on a network-
attached disk, which has a cache size (nowadays 8—16 MB)
that is a negligible percentage of the database size. In later
sections we will study the impact of the cache.

The mechanisms we propose are classified in two cat-
egories: (i) those that combine separate, “off-the-shelve”
broadcast and disk scheduling algorithms, and (ii) those that
are based on a single scheduling criterion that takes into ac-
count information that is important to both broadcast and disk
scheduling algorithms.

2.1. Combining separate broadcast and disk
scheduling algorithms

The first of the algorithms we present below extend and com-
bine the RxW broadcast scheduling algorithm with a disk
scheduling algorithm through various mechanisms. The sec-
ond uses FCFS, as broadcast scheduling algorithm. Both al-
gorithms depend on the C-LOOK disk scheduling algorithm.

2.1.1. The ADoRe algorithm: Active disk on requests

A straightforward implementation of the RxW algorithm in
our setting would imply that each time it is called the broad-
cast scheduling algorithm forwards a single request to the disk
system and once the item is retrieved and broadcasted, RxW is
called again to pick the next item, and so on. This, obviously,
results in poor disk subsystem performance, since in essence
the items are retrieved from disk in a random order. The
ADoRe algorithm attempts to avoid the performance short-
comings of RxW. It reduces the average disk service time by
forwarding a group of requests to the disk system, facilitating
the disk scheduling algorithm’s optimization to produce bet-
ter results. For example, running RxW once to pick K = 10
items and invoking a C-LOOK sweep with K = 10 requests
will take less time than running the RxW algorithm 10 times,
each time picking one data item and waiting until it is re-
trieved from the disk. At the same time, ADoRe keeps the
disk system highly utilized, by forwarding requests to it when
it becomes idle, even if fewer than K requests exist in the
broadcast queue.
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ADoRe is a fairly simple algorithm, that is based on a gen-
eralization of RxW. It works exactly as follows: when the
disk becomes idle, K requests are directed from the broad-
cast server queue to the disk scheduler queue to be served.
If there are more than K outstanding requests in the broad-
cast server queue, the RxW algorithm is applied and a group
of K requests with the highest RxW values are selected and
handed to the disk. If there are fewer than K requests in the
broadcast queue, then all requests are passed to the disk.

Therefore, if K equals 1 the ADoRe algorithm becomes
a straightforward implementation of the RxW algorithm since
it directs one request from the broadcast server queue, by ap-
plying the RxW algorithm, to the disk server queue every time
the broadcasting of the previously selected data item is com-
pleted.

2.1.2. The FLUSH algorithm

The performance gains of ADoRe come from higher disk uti-
lization and higher disk scheduling optimizations, while still
trying to exploit the performance benefits of RxW, particu-
larly its fairness achieved through the W component in the
scheduling criterion. The key idea for the development of
FLUSH is to pursue more aggressively higher disk utiliza-
tions and higher disk scheduling optimizations, at the expense
of any benefits contributed by RxW. The performance evalua-
tion of FLUSH will help us weigh the benefits of RxW against
those due to higher disk subsystem performance.

The FLUSH algorithm uses also the C-LOOK disk sche-
duling algorithm, however, FLUSH manipulates differently
the requests on the broadcast server. Every time the disk fin-
ishes the service of a single request, all the requests in the
broadcast queue are flushed to the disk system and incorpo-
rated into the C-LOOK scan lists. Thus, FLUSH in essence
employs no scheduling algorithm at the broadcast queue. The
end result is that longer queues (scan lists) are formed at the
disk, which results in even higher disk utilizations and possi-
ble disk scheduling optimizations.

2.2. Amalgamating broadcast and disk
scheduling algorithms

The amalgamated algorithms combine information available
at the broadcast server and at the disk server, producing a sin-
gle scheduling criterion that takes into account factors that
have been found to improve the performance of broadcast and
disk scheduling. The obvious motivation for studying such al-
gorithms is to verify whether the single scheduling criterion
they propose can lead to higher performance, compared to
that of mechanisms that simply effectively combine separate
disk and broadcast scheduling algorithms.

2.2.1. The OWeiST algorithm: Optimal Weighted

Service Time
The OWeiST algorithm attempts to improve performance in
two ways. First, it exploits information available at the broad-
cast server and at the disk server. Second, it employs a differ-
ent disk scheduling algorithm, which for larger groups of re-
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quests, introduces further optimizations. The additional moti-
vation is to study whether more sophisticated disk scheduling
algorithms will result in higher performance.

According to the OWeiST algorithm whenever the disk be-
comes idle, K or fewer requests as in the ADoRe algorithm,
are being selected from the broadcast queue and forwarded
to the disk queue. The service of the requests is being car-
ried out in such order that the sum of the products R times
Disk Service Time of the requests is kept minimum. The op-
eration of the algorithm is as follows. We maintain a graph
of K requests. The edge connecting two requests r; and r;
has a label R; x S§; where R; is the number of requests in
the broadcast queue for item j and S; represents the disk ac-
cess cost to access item j, given that the previously retrieved
item from the disk was item i. The disk access cost contains
the seek time from the cylinder of item i to the cylinder of
item j, plus the rotational delay necessary to access item j
once the disk head is positioned on j’s cylinder, plus the time
to retrieve item j from the disk. The algorithm computes all
possible permutations for the K requests and selects the op-
timal permutation that gives the smallest total weighted cost.
Therefore, OWeiST minimizes the quantity

K
D (Ri x ).
i=1

Note that, obviously, this is analogous to computing a so-
lution to the Traveling Salesman Problem (TSP). However,
by bounding the value of the parameter K we can control the
overhead involved in computing the optimal service schedule.
Notice that, when K equals 1, OWeiST is identical to ADoRe
with K equal to 1.

2.2.2. The RxW/S algorithm

We also propose the amalgamated algorithm RxW/S, where S
is the disk service time, which takes into account information
of the broadcast scheduling algorithm (i.e., R and W for every
requested data item) and the disk service overhead. RxW/S is
similar to the “Relief” scheduling algorithm proposed in the
literature [12] in the context of scheduling video tape accesses
in tertiary storage tape libraries. It is a one-step algorithm,
which is being activated whenever the disk becomes idle and
selects a request from the broadcast queue to be serviced from
the disk. The selected request is the one that has the higher
value of the expression (R x W)/S. In this algorithm there
is no grouping of requests because requests are directed to
the disk one at a time. The selection of the data item to be
broadcasted, favors items with high R x W values (as the
RxW algorithm suggests) and low disk access times (as our
comprehensive view of the problem requires).

3. Performance study

The performance of the algorithms has been studied through
simulation. The simulations were executed on typical Pen-
tium III PCs. Each run simulates the transmission of one mil-
lion data items. We observed, that by simulating 1,000,000
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Table 1

Disk characteristics.
Cylinders 6,900
Surfaces 12
Sector size 512
Revolution speed 10,000 rpm
Number of zones 20
Average transfer rate 12 MBps

transmitted data items, we were able to estimate with accu-
racy the steady-state algorithms performance.

Table 1 shows the parameter setting for the simulated disk
system. We assume that the database consists of 10,000
16 KB (or alternatively 200 KB) data items.

3.1. Simulation model

We developed a model, as depicted in figure 1. We used a Re-
quest Generator, which generates a stream of requests accord-
ing to a Poisson arrival process. The request arrival rates we
used in our simulations vary between 10 and 500 requests per
second.

Requests are generated from the Request Generator and
then they enter the broadcast server queue. By the applica-
tion of the algorithms in section 3, requests are directed to
the disk server queue where the corresponding data items are
retrieved from disk and are then forwarded to the transmit-
ters’ queue (see section 3.3). When a cache exists, all the data
that are forwarded to the transmitters’ queue are first moved
from disk to the cache (provided that they are not already lo-
cated in the cache). The transmitter conveys all the data items
to the clients through the channel link. Finally, the statistics
collector records all relevant statistics in order to measure the
performance.

In our simulation, it is assumed that the request probabil-
ities of all data items follow a Zipf distribution. The Zipf
distribution may be expressed as follows:

16
pi:C(lT>» I1<i <M,

where ¢ = 1/ "M (1/i)? is a normalizing factor, and 0
is a parameter referred to as the access skew coefficient.
The distribution becomes increasingly “skewed” as 6 in-
creases [15,21]. We will report results for two values for 9;
6 = 0 (uniform distribution), and & = 1.17 (highly skewed
access distribution).

3.2. Performance metrics

In client—server information systems, the user response time,
namely the time between the arrival of the request at the
broadcast server and its service, is one of the most important
factors for evaluating the systems’ performance. A metric that
gives an overall view of the response time of all clients in the
system is the mean response time. As is remarked in [15], it is
natural in the real world some users’ demand patterns to com-
pletely differ from the overall demand pattern and their own
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response time may be much worse than the overall mean. In
this paper, we address this problem by adopting as a perfor-
mance metric an index of response time fairness that always
lies between 0 and 1 [14]. We have chosen this metric over the
square coefficient of variation of the response time, since the
fairness index is a further normalization giving a number be-
tween 0 and 1. This boundedness aids intuitive understanding
of the fairness index. For example, an algorithm with a fair-
ness index of 0.10 means that it is unfair to 90% of the users,
and an algorithm with a fairness index of 0.90 means that is
fair to 90% of the users. The fairness index, if n contend-
ing users are in the system such that the response time of the
request of the ith user is denoted by x;, is defined as follows:

CENP [ a]
T =Ty =y

where x is the random variable denoting the response time
of a client’s request. We have also considered the ratio of
the standard deviation to the mean response time of a request
(i.e., the square root of the square coefficient of variation), as
an additional fairness indicator.

x; 20,

3.3. Performance results

The results we present below are a representative sample of
the results we have obtained. We conducted a number of ex-
periments under different combinations of the arrival rate, the
grouping parameter K (for algorithms ADoRe and OWeiST),
and the access skew coefficient 6. The two primary perfor-
mance metrics, the mean response time and the fairness in-
dex, are plotted versus the request arrival rate X, for different
values of the parameter K. The CPU overhead for the RxW
algorithm and for calculating the optimal permutation of the
OWeiST algorithm is not included in the mean response time
result. However, the CPU time (overhead) of the application
of the RxW algorithm on the broadcast server queue was es-
timated to be less than 1 ms and the corresponding time for
the disk scheduling mechanism of the OWeiST algorithm for
figuring out the optimal permutations when K equals 5 was
estimated to be approximately 1 ms. Hence, these costs are
considered negligible.

Figures 2-5 present the results we obtain under the as-
sumptions of no cache memory available and of infinite
broadcast channel speed. As a result of these assumptions,
the response time of a client’s request corresponds to the time
between the arrival of the request at the server and the retrieval
of the corresponding data item from the disk.

Figures 2—4 present the mean response time of the pro-
posed scheduling algorithms, ADoRe, FLUSH, OWeiST, and
RxW/S. As we mentioned in section 2, the ADoRe algorithm
with K equal to 1 resembles the RxW algorithm. Figure 2
presents the mean response time (in ms) versus the arrival
rate A, for & = 1.17, 16 KB data item size, and K = 1
(which means that each group of the requests contains 1 ele-
ment). We observe that as the aggregate request arrival rate
increases beyond 50 (A > 50), the mean response time of the
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ADoRe, and the OWeiST is sharply increased, reaching the
value of 590 ms for arrival rate A = 120 requests/s. On the
contrary, the mean response time is maintained low for the
FLUSH, and the RxW/S algorithms, with mean response time
values less than 130 ms for the RxW/S and less than 100 ms
for the FLUSH, with arrival rate A = 120 requests/s. This
demonstrates that the latter two algorithms perform consider-
ably better. The same trend is observed for 200 KB data item
size, as is shown in figure 3. The difference in the mean re-
sponse time is due to the retrieval time from the disk of the
200 KB data item, which is a multiple of the corresponding
time of the 16 KB data items.

In figure 4 the value of the parameter K increases to 5
and we notice similar behavior. Notice that K refers only to
ADoRe and OWeiST algorithms, while the curves of FLUSH
and RxW/S are the same as in figure 2. OWeiST performs
much better than before, and the mean response time is
roughly similar to that of the FLUSH and the RxW/S for
all A values examined. This performance improvement of the
OWeiST was expected, since its optimization (i.e., the calcu-
lation of the shortest path for visiting all K data items on the
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disk in accordance to their popularity) introduces obviously
greater benefits as K increases. ADoRe with K equal to 5
performs slightly better than with K equal to 1, because the
RxW algorithm forwards a group of requests to the disk and
not just one at a time.

The improved performance of FLUSH over the other three
algorithms, as A increases, shown in figures 2—4 was expected
since FLUSH forwards requests to the disk server as they ar-
rive, even before the disk system has finished the previous
group of requests, increasing the number of requests that are
waiting to be serviced in the disk queue. This gives the disk
scheduling algorithm (C-LOOK) the chance to further opti-
mize the disk access time. The OWeiST algorithm cannot do
that since given the NP-Completeness of calculating the opti-
mal schedule, the disk system queue must be relatively small.
The critical observation is that the broadcast server must keep
the disk server as busy as possible and this outweighs in im-
portance any improvement from the other disk scheduling al-
gorithms.

Figure 5 shows the fairness index plotted versus the re-
quest arrival rate A for the case of 16 KB data item size,
and K equal to 1. We observe that FLUSH and RxW/S main-
tain the fairness index above 70% even for increased arrival
rates, while the fairness indices of ADoRe and OWeiST drop
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abruptly. Even for 200 KB data item sizes (for space reasons
these results are not shown), FLUSH maintains the fairness
index around 70% when the fairness indices of the remaining
algorithms drop well below 50%.

As an additional fairness metric we have examined the
ratio of the standard deviation to the mean response time.
FLUSH maintains the value of this ratio below 0.7 for all
values of the arrival rate, and data item sizes we examined.
For completeness purposes, we also simulated the demand
for data items using the Uniform distribution (6 = 0). As ex-
pected, we observed that the mean response time of all algo-
rithms for 6 = 0, increases rapidly as the arrival rate increases
(compared to the corresponding results in figures 2, 3, and 4).
This is due to the decreasing possibility of serving more than
one client by a single broadcast. FLUSH, however, continues
to perform best and maintains a fairness index above 65%.

4. Studying the impact of the cache and the cache
replacement algorithms

In more skewed access distributions, some data items are
more popular and thus it is reasonable to keep them in cache
memory, since we can thus reduce the average cost for fetch-
ing data items from secondary storage. We present a cache
replacement mechanism, which combines both the Least Re-
cently Used (LRU) and the Least Frequently Used (LFU)
policies. The LRU and the LFU cache replacement policies
are popular due to their simplicity and efficiency. The combi-
nation of those two policies results in a policy that is superior
to them as well as to other more efficient replacement poli-
cies that have been previously suggested (such as the LRU-k
algorithm [16]).

4.1. The cache replacement algorithms

The LF-LRU algorithm. LF-LRU operates as follows. It
uses a cache buffer, with a given capacity in data items. The
algorithm operates using two sorted lists, an LRU and an LFU
list. The data items are entering the buffer being placed at the
top of the LRU list. For every item that enters the buffer, the
algorithm maintains a counter of the number of its references
during the time it stays in the buffer. Upon a reference of
a data item, the algorithm first checks whether the requested
item is in the cache memory. If it is, the reference counter is
incremented and the data item is moved from its present po-
sition in the LRU list to the top of the LRU list. In the case
that the requested data item is not in the cache memory, the
missed item is fetched from disk, placed at the top of the LRU
list and its reference counter is initialized to 1.

LF-LRU maintains also the LFU list; a sorted list of all
cached items in non-decreasing order of reference counter
values. The replacement policy of LF-LRU dictates that the
newly fetched item must replace in the cache memory the
item that has the smallest reference counter. Among the
items that tie for the smallest counter value, the item that
is closest to the bottom of the LRU list is removed. Every
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time a data item leaves the cache memory the corresponding
counter is erased. This makes the mechanism adaptable to
abrupt changes in the interests of the client population.

The LRU-k algorithm. The motivation behind this algo-
rithm [16] is to overcome the well-known shortcoming of
LRU in that it does not incorporate any knowledge of the
history of accesses to data items, which would lead to the
ability to identify the truly hot objects. LRU-k reduces to the
well-known LRU method when k = 1. The basic idea in
LRU-k is to keep track of the times of the last k references to
memory data items, and to use this statistical information to
rank-order the data items as to their expected future behavior.
More formally, given a reference string known up to time ¢,
ri,ra, ..., s, the “backward k-distance” denoted b;(p, k) is
the distance backward to the kth most recent reference of data
item p:

x, if r,—x has the value p
and there have been exactly
k — 1 other values i
Bi(p, k) = witht — x < i <t, wherer; = p,

oo, if p does not appear at least k times

mri,rp,...,rs.

The data item p to be dropped is the one whose backward
k-distance, b;(p, k), is the maximum of all data items in the
buffer. It is obvious that the larger the k-value is, the greater
the efficiency of the algorithm will be; but also the greater
will be the administration cost for maintaining all these ref-
erences. The designers of LRU-k suggested that a value of
k = 2 (i.e., LRU-2) will probably be a very good compromise
for most environments.

4.2. Performance results

The system including cache memory was simulated as de-
picted in figure 1. We have studied the performance of the
algorithms in section 2 as it is modified by the existence of the
cache. We have examined both the LF-LRU algorithm as well
as the LRU-2, and LRU-10 algorithms. We obtained results
for many cache memory sizes in the range of 0.03% to 20%
of the database size, but we only present some representative
results for space reasons. We used the Zipf distribution for
the simulation of the demands for various data items by the
clients, with a variety of different values for the access skew
coefficient 6, ranging from 6 = 0 to & = 1.17, but we only
present the case of & = 1.17. The data item sizes that we had
studied are 16 KB and 200 KB. We assume that a request for
a data item that is located in the cache memory is immedi-
ately serviced with zero response time, since the time to read
an item from the cache memory is negligible compared to the
time of the retrieval of the same item from the disk.

Figure 6, shows the mean response time behavior of
ADoRe (K = 1), FLUSH, and RxW/S algorithms when
a cache memory of size 5% of the database exists, in the case
of 16 KB data item size, and & = 1.17 for different arrival
rates 1. As we notice, the algorithms perform almost the same
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for arrival rates less than or equal to 300 requests/s. When
A = 350 requests/s, ADoRe’s mean response time increases
more rapidly than the other two algorithms. As A increases to
400 requests/s the mean response time of ADoRe is almost
50 ms, while FLUSH and RxW/S have response times less
than 10 ms. As X increases further, the mean response time of
ADoRe exceeds 1.7 s, while that of FLUSH is around 35 ms
and of RxW/S around 53 s. Since, FLUSH performs better
than the other two algorithms in the remaining of the paper
we use this algorithm.

Figures 7 and 8 present the mean response time, and fair-
ness behavior of the FLUSH algorithm, in the case of 16 KB
data item size and € = 1.17 for several different cache sizes.
Figure 7 presents the mean response time (in ms) versus the
request arrival rate A for cache sizes equal to 0.03%, 5%, 10%
and 20% of the database. We observe that even in the case of
the smallest cache memory of size equal to 0.03% of the data-
base, the mean response time decreases by almost 50% com-
pared to the corresponding results in figure 2. As the cache
size increases to 5% of the database or higher, the mean re-
sponse time is reduced drastically. For arrival rates less than
120 requests/s the mean response time is kept below 3 ms,
and as the load increases it maintains values less than 20 ms
for cache size equal to 5% of the database and below 10 ms
for larger cache sizes.
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Figure 8 shows the fairness index of FLUSH versus the ar-
rival rate A for four different cache sizes. We observe that only
when the cache size is less than or equal to 0.03% of the data-
base the algorithm maintains a high degree of fairness. For
larger cache sizes the fairness of the algorithm drops. This is
expected, due to the fact that there are now fewer data items
which continue to be retrieved from the disk in order to be
transmitted, in contrast to the increased number of data items
that are found in the cache and they are immediately transmit-
ted from there. This creates a larger variance in the response
time, which is reflected in the fairness index. Note that this
is a fundamental performance characteristic of larger caches
and affects all algorithms, not just FLUSH.

Figure 9 shows the behavior of FLUSH with 200 KB data
item size, and cache memory. We observe that in comparison
to figure 3, the response time of the requests has been reduced
more than 35%, even for the small cache size of 0.03% of
the database. As it is expected, fairness is maintained only
when the cache is small and the algorithm is not fair when the
cache size becomes larger (the obtained results are similar to
those in figure 8, and are thus not shown). From figures 7,
8, and 9, we conclude that the enlargement of the cache size
causes significant reduction of the mean response time, at the
cost of an expected sacrifice with respect to the fairness of the
algorithm.

We have also simulated FLUSH for the case of 6 = 0
(Uniform distribution), and we have noticed that when the
cache size is very small (0.03% of the database), the system
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Table 2
Cache = 0.03%, FLUSH, 6 = 1.17, 16 KB.
A (requests/s) LF-LRU (ms) LRU-2 (ms) LRU-10 (ms)
10 10.96 12.04 11.13
25 12.26 13.66 12.48
50 15.57 17.95 15.99
75 22.05 26.01 22.57
100 34.07 40.43 34.66
120 49.95 57.36 50.74
Table 3
Cache = 5%, FLUSH, 6 = 1.17, 16 KB.
X (requests/s) LF-LRU (ms) LRU-2 (ms) LRU-10 (ms)
10 2.56 2.67 2.35
25 2.65 2.74 2.40
50 2.76 2.85 2.48
75 2.85 3.00 2.58
100 2.99 3.15 2.68
120 3.10 3.28 2.81

behaves as if there is no cache since the objects in the cache
are replaced continuously because of the fact that the object
popularities are uniformly distributed. As the request arrival
rate and the cache size increase the mean response time de-
creases, because the augmented load increases the possibility
of requests for objects placed in the cache. The fairness of the
system is abated, but even for cache size equal to 20% of the
database, a fairness index higher than 50% is achieved.

LF-LRU versus LRU-k. In the remainder of this section
we present the results comparing the relative performance
(mean response time) of the cache replacement algorithms:
LF-LRU, LRU-2, and LRU-10 for very small and large
caches. We focus on skewed access distributions since they
are the most interesting. We show the results for smaller ob-
jects (the results for larger objects follow the trends shown for
cache size).

Looking at table 2 we conclude that for small caches
LF-LRU outperforms LRU-2, across all workloads. The per-
formance gain is from 10 to 20% for lighter and heavier work-
loads, respectively. LRU-10 is worse by only a few percent
and thus has almost identical performance to LF-LRU.

Table 3 shows that even for large caches, LF-LRU con-
tinues to outperform LRU-2, only now by a smaller margin,
while all the additional information kept by the LRU-10 algo-
rithm seems that it starts paying off, outperforming LF-LRU
by a margin of about 10%. (Note, however, that LRU-10 pays
an increased administration cost, which prompted the authors
of LRU-k to suggest that LRU-2 should be selected due to its
reduced administrative cost.)

5. Transmission channel impact consideration

The estimation of the end-to-end system delay is a very strong
indication of the overall efficiency of the proposed broad-
cast scheduling mechanisms. We have simulated three dif-
ferent speeds for the transmission channel namely, 2 Mbps
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(mostly referring to an outdoors wireless link), 155 Mbps and
620 Mbps (referring to ATM speeds OC-3 and OC-12, re-
spectively). We present representative results for the case of
155 Mbps.

The system including the transmitter and the transmission
channel was simulated as depicted in figure 1. The requests
in the transmitter’s queue are served in FIFO order. As in the
previous section we present results only for the FLUSH algo-
rithm, which performs better. We obtained results for many
cache memory sizes in the range of 0.03% to 20% of the data-
base size, but we only present some indicative results. We
used the Zipf distribution for the simulation of the demands
for various objects by the clients, with a variety of different
values for the access skew coefficient 6, ranging from 6 = 0
to 8 = 1.17, and we only present the case of 6 = 1.17.
The data item sizes that we have simulated are 16 KB and
200 KB.

Figure 10 shows the mean response time versus the request
arrival rate A, in the case of 16 KB data items, 6 = 1.17,
for cache sizes equal to 0.03%, 5%, 10% and 20% of the
database. We observe that the results in figure 7 are simi-
lar to those in figure 10 with an inappreciable increase of the
mean response time, which is due to the additional transmis-
sion time. The results of the fairness index versus the request
arrival rate A are similar to those in figure 8§, i.e., the fairness
drops for larger cache sizes.

Figures 11 and 12 present the response time and fair-
ness behavior versus the request arrival rate A, in the case of
200 KB data item size, # = 1.17 and for cache sizes equal
to 0.03%, 1%, 5% of the database, respectively. Comparing
figure 11 with figure 9, we notice that the mean response times
in the case of 0.03% cache size are similar, but as the cache
size increases, the mean response time depicted in figure 11
increases compared to that of figure 9. For example, the mean
response time in figure 9, in the case of cache size equal to 5%
of the database, is around 8 ms for A = 120 requests/s, while
in figure 11 is around 79 ms. This is due to the fact that as the
request arrival rate increases more requests are made for the
most popular objects that are located in the cache memory and
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are immediately directed to the transmitter queue inducing
longer than before transmitter queues. As a result, the waiting
time in the transmitter’s queue increases the mean overall de-
lay of the requests causing the difference in figures 11 and 9,
as well as the change of the fairness index behavior shown in
figure 12 (in contrast to the conclusion drawn from figure 8
that the fairness of the system decreases as the cache size in-
creases).

Regarding the other results not shown here, the most no-
ticeable are the following. From the results we obtained for
the 2 Mbps transmission channel, we concluded that the chan-
nel speed is the system’s bottleneck in that case. We exam-
ined FLUSH with LF-LRU with different cache sizes and we
observed that the trend of decreasing mean response times as
the cache size increases, observed in figures 10 and 12, is no
longer valid, since the transmission channel is the bottleneck.
When a 620 Mbps broadcast channel is considered, we ob-
served that the mean response time behavior of the system is
exactly the same with that presented in section 4.2. We con-
clude that for very high-speed channels the disk constitutes
the systems’ bottleneck.
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6. Contributions and concluding remarks

Looking at related work for broadcast scheduling, one can
find several interesting algorithms for deciding which data
item to pick for broadcasting. However, all these algorithms
make the (implicit or explicit) assumption that the chosen data
item is immediately available to the transmitter for broadcast-
ing. In a real system this obviously does not hold. This fact
begs the question of how all the basic system components of
a broadcast server’s system infrastructure should interact in
order to build high performance broadcast servers. With this
paper we attempt to address this question. We put forward
a comprehensive study from a system’s viewpoint of the prob-
lem of broadcast scheduling. Our study is comprehensive in
that it considers the interplay between the broadcast schedul-
ing algorithms, the disk scheduling algorithms, and the cache
management algorithms.

We first study the interplay between broadcast and disk
scheduling algorithms, which will be the critical performance
issue in applications and system configurations where the im-
pact of caches will be secondary. We propose four novel
scheduling algorithms, the ADoRe, FLUSH, OWeiST, and
RxW/S classified under two categories: those that combine
separate, “off-the-shelve” broadcast and disk scheduling al-
gorithms and those that amalgamate the information available
at the broadcast queue and at the disk queue, producing a sin-
gle scheduling criterion. We study their performance in terms
of mean response time and response time fairness, under dif-
ferent values of the problem parameters (system load, access
distributions, object sizes, etc.).

Subsequently, we focus on the impact of the server’s
cache. We discuss a cache replacement scheme, the Least
Frequently-Least Recently Used (LF-LRU) scheme, which
has been found in our performance study to outperform other
well-known cache replacement algorithms. In particular, it
has been found to outperform LRU-2, while having similar
administrative overheads. We have also studied the perfor-
mance of the broadcast and disk scheduling algorithms cou-
pled with this cache replacement algorithm. Finally, in an ef-
fort to study the end-to-end system performance, we also fo-
cused on the transmitter, studying its impact and presenting
the end-to-end performance.

The major conclusions of this work are as follows.

In environments where the broadcast server depends heav-
ily on the disk system, (i.e., it is disk-intensive as opposed
to cache-intensive) the critical issue that affects the overall
system performance is to design mechanisms which ensure
that the broadcast server keeps the disk system highly uti-
lized and allowing the disk scheduling algorithm to perform
its optimizations. Our results show that a simple mechanism
as embodied in our FLUSH algorithm outperforms signifi-
cantly the other mechanisms. This is a strong indication that
system developers need not spend time and effort develop-
ing mechanisms, which are based on more sophisticated and
elaborate disk scheduling algorithms or on other sophisticated
algorithms based on combining information at the broadcast
and the disk queues.
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Our performance study has shown that the proposed al-
gorithms, namely, ADoRE, FLUSH, OWeiST, and RxW/S
can achieve significantly better performance than that of the
RxW algorithm (as it is straightforwardly implemented us-
ing the ADoRe (with K = 1)) in cache- or disk-intensive
workloads and under a large variation of the values of the
basic problem parameters (e.g., access skew distribution, sys-
tem load, object sizes, etc.). Furthermore, and perhaps more
importantly, our results show that a single algorithm, namely
FLUSH, consistently outperforms, in terms of mean response
times, all others under all the above workload and system
parameters. At the same time, FLUSH produces fair sched-
ules. This brings up another interesting issue raised from our
comprehensive study, namely the following: one of the bene-
fits of using RxW for broadcast scheduling, is the fact that it
achieves fair schedules (through the W factor in its schedul-
ing criterion). However, FLUSH also produces fair schedules
due to the fairness achieved by the underlying disk schedul-
ing algorithm (C-LOOK). Thus, when researchers are view-
ing in isolation and incomprehensively the various individual
components, it is possible that considerable effort is spent to
develop duplicate mechanisms to address the same problem
(e.g., fairness), when a single mechanism would suffice.

A conclusion worthy of special notice is that in environ-
ments with or without cache memory (i.e., either with cache-
or disk-intensive workloads) we have actually found that “ef-
ficient” broadcast scheduling algorithms found in the litera-
ture have a negligible impact. Specifically, if instead of em-
ploying the RxW algorithm at the broadcast queue we em-
ployed FCFS scheduling the difference in the overall perfor-
mance of the broadcast system would barely be noticeable.
Notice that, in the FLUSH algorithm, every time we have an
arrival, it is passed to the disk system. Viewed differently, this
implies that FLUSH essentially uses a FCFS scheduling at the
broadcast queue. This conclusion is a strong indication that
the main attention of most related research efforts needs to be
refocused.

Finally, from our study incorporating the transmission
queue we conclude that in wireless environments (i.e., with
2 Mbps bandwidth) the transmission server is the dominant
performance bottleneck, reducing the significance of cache
management and disk scheduling.
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