
1452 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 9, september 2005

Evaluation of Kalman Filtering for Network
Time Keeping

Aggelos Bletsas, Associate Member, IEEE

Abstract—Time information is critical for a variety of
applications in distributed environments that facilitate per-
vasive computing and communication. This work describes
and evaluates a novel Kalman filtering algorithm for end-
to-end time synchronization between a client computer and
a server of “true” time [e.g., a Global Positioning Sys-
tem (GPS) source] using messages transmitted over packet-
switched networks, such as the internet. The messages ex-
changed have the network time protocol (NTP) format, and
the algorithm evaluated, is performed only at the client
side. The Kalman filtering algorithm is compared to two
other techniques widely used, based on linear programming
and statistical averaging, and the experiments involve inde-
pendent consecutive measurements (Gaussian case) or mea-
surements exhibiting long-range dependence (self-similar
case). Performance is evaluated according to the estima-
tion error of frequency offset and time offset between client
and server clock, the standard deviation of the estimates
and the number of packets used for a specific estimation.
The algorithms could exploit existing NTP infrastructure,
and a specific example is presented.

I. Introduction

In this paper we evaluate a novel Kalman filtering algo-
rithm for end-to-end time synchronization between two

computers exchanging messages over a packet-switched
network such as the internet. The Kalman filtering algo-
rithm is compared to two other techniques widely used,
based on linear programming and statistical averaging. We
are particularly interested in the calculation of frequency
offset and time offset between the clock of a client com-
puter and the clock of a remote server. The server acts as
a source of true time.

Accurately synchronized clocks enable services and pro-
vide the basis for efficient communications. Autonomous
sensor array operation is facilitated by accurate time
stamps [1]. Global positioning system, as well as proposed
ultra-wide band urban and intra-building location systems
[2] rely on precise timing measurements. Internet perfor-
mance can be evaluated from accurate measurement of the
delay between various nodes in the network. Various im-
portant internet protocols such as TCP could benefit from
accurate time keeping [3].

In this work, we exploit the network time protocol
(NTP) [4] messages between a client and a single server, in
three different algorithms and evaluate their performance.
However, the algorithms do not depend on the details
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of the NTP message format, and other formats could be
adopted with minor modifications. The NTP is a hierarchi-
cal client-server synchronization scheme widely used and
can provide for accuracies on the order of milliseconds un-
der the assumption that there is a reasonably short round
trip time between client and server. The NTP also incor-
porates connections to multiple servers for increased reli-
ability. The following discussion is about the algorithms
for the local clock parameters estimation when an inter-
net connection is used to a single time reference server.
These parameters then could be used to steer the local
clock according to hardware and operating system details.

The rest of the paper is organized as follows. In Sec-
tion II we introduce the terminology used throughout this
work and proceed to formulate the problem. We present
prior art and justify the selection of three algorithms com-
pared in this work. In Section III we analytically present
algorithms based on Kalman filtering, linear programming,
and averaging of time differences. In Section IV we in-
vestigate their performance for the Gaussian case (no de-
pendence between successive measurements) and for the
self-similar case (long-range dependence). We conclude in
Section V.

II. Background

A. Clock Basics

Using the representation C(t) for a clock reading and
T (t) = t for true time, the following definitions are pre-
sented:

• Time offset: the difference between the time reported
from a clock and the true time: C(t) − T (t) =
C(t) − t. In this paper we will refer to the time off-
set calculated for t = 0 as θ and for t �= 0 as x.

• Frequency offset (also referred as skew): the differ-
ence in frequencies between a clock and the true time:
C′(t)−T ′(t) = C′(t)−1. In this work, we will refer to
frequency offset as φ − 1.

• Drift: the long-term frequency change of a clock. Drift
is caused by changes in the components of the oscilla-
tor and its environment.

Typical quartz oscillators (without any type of temper-
ature compensation) exhibit frequency offsets on the order
of a few parts per million. For example a 10 ppm oscilla-
tor will introduce an uncertainty (i.e., error) of 36 ms in
1 hour. Cesium beam atomic clocks, however, exploiting
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Fig. 1. Frequency offset φ − 1 and time offset θ of C(t), compared
with the source of true time T (t).

the stabilities of the quantum world perform better with
uncertainties close or smaller than 1 ns in 24 hours.

Modeling a clock as a piecewise linear function of time
is a reasonable step as any function can be approximated
in a similar manner. The client should estimate only two
parameters, namely, the time and frequency offset θ, φ−1,
respectively, compared to the source of true time T (t) as
depicted in Fig. 1, as only two parameters are needed to
define a line.

However, for this model to be realistic, it is important
to keep the duration of the measurement process as small
as possible, before φ and θ at the client clock are mod-
ified. The parameters φ, θ change with a rate related to
the clock drift; and, it has been found that for most free
running oscillators used in current computer systems, this
change happens at intervals on the order of 1–2 hours or
more [5]. That is reasonable to expect because macroscopic
factors that heavily influence crystal oscillators, such as
temperature, change no faster than that rate.

A statistical tool that provides a stationary measure of
the stochastic behavior regarding time deviation residuals
and their associated frequency fluctuation estimates is the
Allan variance [6]. Allan variance associates frequency fluc-
tuation estimates with specific observation duration and,
therefore, could be used to quantify how often the above
clock parameters change. For an excellent review of oscil-
lators, Allan variance, time and frequency metrology, the
interested reader could refer to [7].

B. Problem Formulation

After describing the clock nomenclature followed in this
work, we are ready to formulate the problem. The client
clock C(t) is synchronized to a time source T (t) = t when
both frequency offset φ and time offset θ are estimated.

The client timestamps (C(t1)) a User Datagram Pro-
tocol (UDP) packet according to each own clock C(t)
and sends the message to a time source server that time-
stamps the packet upon reception and retransmission (t2,
t3, respectively) back to the originating client (Fig. 2).
The client timestamps the message again upon recep-
tion and, therefore, acquires a set of four timestamps:
(C(t1), t2, t3, C(t4)). For convenience, we will notate C(t1)

Fig. 2. Exchanging timestamps between client and time server. No-
tice that a time difference of δt according to server clock is translated
to φδt according to client clock.

as C1 and C(t2) as C2 from now on. The same process can
be repeated for a set of N consecutive messages. Therefore,
we should answer the following questions:

• What is the optimal processing of N messages
(C1

1 , t12, t
1
3, C

1
4 ), (C2

1 , t22, t
2
3, C

2
4 ), . . . , (CN

1 , tN2 , tN3 , CN
4 )

so as to obtain unbiased estimates with minimum er-
ror?

• What is the cost of obtaining estimates of φ and θ in
terms of bandwidth spent (number N , inter-departure
time between packets)?

• Do the algorithms used in the estimation of φ, θ im-
pose special restrictions in the operation of client (or
server) operating system (i.e., are there any major
nonalgorithmic modifications in the operation of ex-
isting client/time server daemons)?

The number of packets N exchanged between client and
server (Fig. 2) is a crucial parameter of any algorithm even-
tually adopted, considering the heavy load of current inter-
net time servers—on the order of 1000–1200 requests per
second and increasing every year [8]. Moreover, the inter-
departure intervals of the NTP-like messages should not
be very large because closely spaced packets ensure that
the clock parameters are not changing during the measure-
ments from N packets.

Also, we need to emphasize that the queuing delay q1
across the forward path (from client to server) is never
constant and generally different from the queuing delay
q2 across the reverse path (from server to client) (Fig. 2).
Moreover, because the messages are carried through UDP
packets, the forward and reverse routes could be physically
different; therefore, the propagations delays1 d1, d2 could
be unequal across the forward and reverse paths:

d1 + q1 �= d2 + q2. (1)

1Time needed for the first bit to arrive at the destination as op-
posed to transmission delay that is related to the speed of the link.
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C. Prior Art on Client-Server Schemes

The NTP estimates the time offset using the four time-
stamps of a message, according to the following equation:

x̂n =
Cn

1 − tn2 − tn3 + Cn
4

2
. (2)

Because the round-trip time (rtt) is on the order of a
few ms, the contribution of the frequency offset on the
error for a single measurement is negligible (e.g., a 10 ppm
oscillator for a 10 ms rtt exhibits 0.1 µs that is on the order
of “noise” due to the operating system) and, therefore,
excluded from (2). The frequency offset can be estimated
using several measurements of x as depicted in Fig. 1.

From a closer look at (2), NTP estimates are erroneous
by a quantity proportional to half the difference between
forward and reverse path delays (asymmetry).

x̂n = xn +
dn
2 + qn

2 − dn
1 − qn

1

2
⇒ (3)

x̂n = xn + wn. (4)

That is why the NTP error is upper bounded by half
the round-trip time. If we make the assumption that the
asymmetry, depicted as “noise” wn in (4) for the n-th NTP
message, is an additive white Gaussian, zero-mean random
variable, then the estimate of (2) is the maximum likeli-
hood estimate, equivalent to the efficient2 minimum vari-
ance, unbiased estimator for this particular case, according
to the Gauss-Markov theorem. However, the asymmetry
is not always Gaussian, as we will discuss in the following
sections.

Line-fitting techniques, based on the median slope cal-
culated from averaged one-way delay measurements [9] or
linear programming [10] are alternative proposals for fre-
quency offset estimation. The linear programming tech-
nique proposed in [10] is revisited with a slightly differ-
ent derivation that provides not only for frequency offset
(φ − 1) estimation but also for time offset estimation (θ).

In the Gaussian case, averaging N measurements from
(2) can improve the estimates (decreasing the standard de-
viation of the estimate) by a factor of

√
N . This is an idea

exploited in the client-server synchronization schemes de-
ployed by the National Institute of Standards and Technol-
ogy (NIST) using dedicated phone lines [11] or the internet
[5]. A variant of this method is discussed in this work. A
similar approach based on averaging is also investigated
in [12].

Kalman filtering is an attractive alternative for clock
parameter estimation [13] because Kalman filters are the
optimal linear estimators for the Gaussian case, i.e., the
linear estimators that minimize the mean square error
(MSE) [14]. As we will see in the next section, the prob-
lem can be formalized using the Kalman filtering notation

2The efficient estimator, when it exists, achieves the minimum vari-
ance of the estimate, equal to the Cramer-Rao bound.

and due to the optimality property (at least for the Gaus-
sian case) excels over a range of recursive estimators like
phased lock loops [13].

The optimality and the appealing recursive nature of
Kalman filtering, the intuitive structure (as explained be-
low) of the linear programming technique and the simplic-
ity of the averaging technique (referred as averaged time
differences (ATD)) as well as its wide deployment, were
the reasons behind the selection of the above algorithms
for comparative performance evaluation.

III. The Algorithms

A. Kalman Filtering

The motivation behind the adoption of Kalman filtering
stems from a simple observation: a time interval δt accord-
ing to true time is translated to φ δt according to client
clock (Fig. 2). Therefore, it is sufficient for the client to
send messages at constant intervals δT measured accord-
ing to its local clock and estimate the inter-arrival intervals
at the server, using the timestamps {tn2} that correspond
to true time. Variation of forward and reverse one-way de-
lays are interpreted as noise in the estimation process.

With the above, the formulation of the problem using
Kalman filtering becomes clear: the client sends the NTP
packets at constant intervals δT and estimates the inter-
arrival interval s = δT

φ in the presence of network delay
variations v, exploiting the measured inter-arrival intervals
yn = tn+1

2 − tn2 for n ∈ [1..N ].
The measurement and state model of the Kalman filter

easily follow (Fig. 2):

yn = tn+1
2 − tn2 (5)

= tn+1
1 + dn+1

1 + qn+1
1 − (tn1 + dn

1 + qn
1 ) (6)

= tn+1
1 − tn1︸ ︷︷ ︸

δt

+(dn+1
1 + qn+1

1︸ ︷︷ ︸
en+1

) − (dn
1 + qn

1︸ ︷︷ ︸
en

) ⇒

yn = δt + en+1 − en = δt + vn, (7)

sn ≡ δt =
δT

φ
, n ∈ [1..N ] ⇒ (8)

yn = sn + vn, measurement model, (9)
sn+1 = sn + wn, state model. (10)

The measurement noise vn accounts for the variation of
travel time, when the NTP message is transmitted from
client to server; and it is assumed a zero mean process
throughout this work. This is the type of noise that de-
pends on the network path between client and server. Its
power can be minimized only if the client selects a short-
est path route toward the server. The state model noise
wn accounts for the fact that inter-departure times be-
tween consecutive packets from the client could not be
constant, possibly due to operating system delay varia-
tions. The power of this noise process is fully controlled
by the client and could be estimated by the client’s own
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timestamps {Cn
1 }. Alternatively, we can treat that noise

as additional measurement noise (vn) and simply ignore it
(wn = 0). That was the approach followed in this work.

Assuming vn a zero mean process and en, from (7) a
stationary, nonzero mean process with uncorrelated con-
secutive samples, the following equation is derived:

E[vi vj ] =

⎧⎪⎨
⎪⎩

R i = j

−R/2 i = j + 1
0 otherwise

R = variance(yn), n ∈ 1..N.

(11)

Under the above assumptions and using vector nota-
tion, the measurement and state model equations become:[

yn

yn−1

]
=

[
δt
δt

]
+

[
vn

vn−1

]
⇒ (12)

yn =
[
1
1

]
δt + vn, (13)

sn+1 = sn = δt, n ∈ 1..N. (14)

The Kalman filter “predict” and “update” equations
are omitted and could be found in a relevant textbook
[15]. The Kalman filtering technique is a recursive scheme;
therefore, the estimate sn converges to the correct value of
δt after a number of messages (Cn

1 , tn2 , tn3 , Cn
4 ). The initial

predicted value s0|−1 was set to δT , and the associated
error variance was set to R. After the Nth packet, the
frequency of the client clock is obtained by the output
ŝ = sN |N of the Kalman filter:

φ̂ =
δT

ŝ
=

δT

δ̂t
. (15)

From (7), averaging N measurements results in the fol-
lowing equation:

1
N

N∑
n=1

yn = δt +
1
N

(e2 − e1︸ ︷︷ ︸
v1

+ e3 − e2︸ ︷︷ ︸
v2

· · · + eN+1 − eN︸ ︷︷ ︸
vN

),
(16)

1
N

N∑
n=1

yn = δt +
1
N

(eN+1 − e1). (17)

The average value of N measurements could be used
as a naive estimator of δt, and consecutively of clock rate
via (15). The variance of this estimate, under the same
assumptions for the noise process vn, drops with N2, as
var(eN+1 − e1) = 2 var(en) = var(vn). Despite its attrac-
tive simplicity, this estimator provides large errors, com-
pared to all the other approaches presented in this work,
especially when a small number (N) of messages are used,
as we will see in the following sections.

For the estimation of time offset θ, we could use (2).
However, for a large number N of packets used, the dura-
tion of the experiment multiplied by the frequency skew
could contribute to a significant synchronization error
(e.g., 100 packets spaced 1 s from each other correspond
to an additional time offset of 4 ms for a 40 ppm clock).

Therefore, the estimate of the frequency offset should be
exploited in the time offset calculation.

From Fig. 2 we have the following relationships:

Cn
1 − φ tn2 = θ − φ (d1 + q1)n (18)

Cn
4 − φ tn3 = θ + φ (d2 + q2)n (19)

⇓
Cn

1 − φ tn2 ≤ θ − φd1, (20)
Cn

4 − φ tn3 ≥ θ + φd2. (21)

Therefore, an estimate of θ is obtained by the following
relationship:

θ̂ =
max(Ci

1 − φ̂ ti2) + min(Cj
4 − φ̂ tj3)

2
. (22)

Alternatively, Kalman filtering could be used again for
the estimation of time offset θ. The estimate of clock rate φ
from the above technique could be exploited to adjust the
timestamps Cn

1 ← Cn
1 /φ̂, Cn

4 ← Cn
4 /φ̂ at the client side.

Then measurements of time offset θ according to (2) could
be filtered using standard, one-dimensional Kalman equa-
tions, with measurement model given by (4). The output
estimate of θ after Kalman filtering of N measurements
also is reported in the experimental results section.

B. Linear Programming (LP)

This line-fitting technique exploits both the forward and
reverse path timestamps, by estimating a clock line that
minimizes the distance between the line and the data, leav-
ing all the data points below the line on a (t2, C1) plane or
above the line on a (t3, C4) plane. The following equations
describe the problem and its solution:

1. Forward Path:

α1 = φ,

β1 = θ − φd1,
(23)

(20) ⇒ α1 tn2 + β1 − Cn
1 ≥ 0, ∀n ∈ [1..N ]. (24)

Find α1, β1 that minimize:

f(α1, β1) =
N∑

n=1

(α1 tn2 + β1 − Cn
1 ), (25)

under the constraint of (24).

2. Reverse Path:

α2 = φ,

β2 = θ + φd2,
(26)

(21) ⇒ Cn
4 − α2 tn3 − β2 ≥ 0, ∀n ∈ [1..N ]. (27)

Find α2, β2 that minimize:

f(α2, β2) =
N∑

n=1

(Cn
4 − α2 tn3 − β2), (28)
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under the constraint of (27):

φ̂ =
α1 + α2

2
, (29)

θ̂ =
β1 + β2

2
. (30)

The simple and intuitive derivation above sets this tech-
nique as a strong candidate for clock parameter estimation.

C. Averaged Time Differences (ATD)

This method can be best described by Fig. 1. The time
offset xn is computed according to the NTP formula (2);
therefore, this method has all the limitations discussed at
the NTP section above. Differences of the time offset es-
timates provide estimates for the frequency offset. Partic-
ularly, clusters of 25–50 closely spaced messages are used,
time offsets are computed, and the results are averaged to
a single data point for the time offset. Then that is used
in the following formula for frequency offset estimation:

f̂(tn+1) =
xn+1 − xn

τ
,

f̂ ≡ φ̂ − 1,
(31)

y(tn+1) =
y(tn) + αf̂(tn+1)

1 + α
. (32)

The value of τ nominally should be equal to tn+1 − tn;
however, this quantity cannot be measured by the client’s
own clock. Nevertheless, for small values of the frequency
offset, this can be set to C(tn+1) − C(tn) because that
is what the client can measure. The estimated frequency
offset is averaged again using an exponential filter with a
time constant α that depends on the stability of the local
oscillator. Then the filtered frequency offset is used in the
following formula, which also is depicted in Fig. 1.

x̂(tn+1) = x̂(tn) + y(tn)(τ). (33)

A variant of this method is used in this work. Frequency
offsets are calculated using (31), then filtered using the
above exponential filter with α = 0.5. The final frequency
offset estimation is the mean of all the N exponentially
filtered frequency offsets calculated at each epoch.

The power of this method is its simplicity. For the Gaus-
sian case in which consecutive measurements are indepen-
dent from each other, an increase of samples averaged by
a factor of N reduces the variance of the estimate by a fac-
tor of N . Therefore, there is a trade-off between accuracy
achieved and the cost of realizing it.

IV. Performance

In this section we evaluate the performance of the three
algorithms in two separate cases:

• The Gaussian case in which the queuing delay dif-
ference between two consecutive NTP messages is a

Fig. 3. Asymmetry of delays between forward (to server) and reverse
(to client) path for Gaussian case.

Gaussian random variable. Consequently, the disper-
sion of the packets at the server is also a Gaussian
random variable. In this experiment, consecutive mea-
surements are independent.

• The self-similar case in which multiple pareto connec-
tions aggregate and form cross-traffic with long-range
dependence.

The estimate, the variance of the estimate, and the
number N of packets used at each epoch are reported.
In both cases the true clock frequency offset φ − 1 was
+40 ppm, and the time offset θ was 20 ms. The NTP
messages were transmitted at intervals of 1000 ms. Each
experiment was run 300 times.

A. The Gaussian Case

In Fig. 3 we present the asymmetry between forward (to
server) and reverse (to client) path, from a sample run. The
average round-trip time was on the order of 40 ms, con-
secutive measurements were independent and identically
distributed. In Figs. 4 and 5 we present the average esti-
mate and the standard deviation of the estimate for the
frequency offset φ − 1 and time offset θ, respectively, as a
function of number N of packets used.

The Kalman filter performed better when the number
of packets N was above the minimum number of samples
needed for convergence (on the order of 25–30 packets).
This experimental finding is validated by the fact that the
Kalman filter (at steady-state) is the optimal linear esti-
mator in the presence of Gaussian noise. The LP technique
performed better than both averaging techniques (ATD
and naive estimator), which performed well only if a large
number of messages were used.

Frequency offset estimate variance was decreased with
number N of packets used. From Fig. 4 it is shown that the
standard deviation of the estimate drops linearly with N
(variance drops with N2) for Kalman filtering as well as for
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Fig. 4. Frequency offset estimate and standard deviation as a function
of N (number of packets used), for Gaussian case.

Fig. 5. Time offset estimate and standard deviation as a function of
N (number of packets used), for Gaussian case.

the naive estimator, as expected, and the variance as well
as the error is smaller for the Kalman algorithm. Time off-
set estimates were close to the real value, regardless of N .
This can be justified by the fact that the algorithms pre-
sented here focus on the accurate calculation of frequency
offset that was set at 40 ppm in this experiment. Error in
the calculation of a 40 ppm quantity over a duration of
100 s (1 packet every 1000 ms) is negligible in the calcula-
tion of time offset (using the algorithms described above)3

and, of course, not visible at the time scales of Fig. 5.

3Time offset θ was estimated using the same algorithm for
Kalman, ATD, and naive, described in the Kalman filtering section.
Kalman filtering for both time and frequency offset is depicted as
Kalman/Kalman.

Fig. 6. Simulation in ns-2 with pareto cross traffic; 14 connections
per link per direction.

Fig. 7. Asymmetry between forward and reverse path with self-
similar traffic.

B. The Self-Similar Case

In this section, we are investigating the performance of
the three algorithms in the presence of bursty traffic. It has
been shown that the aggregation of many on/off sources
could form a self-similar source, exhibiting long-range de-
pendence [16]. The fact that local area network traffic
demonstrates chaotic (self-similar) behavior [17] motivates
the test of the three algorithms in a self-similar environ-
ment that is fundamentally different from the Gaussian
case for which Kalman filtering seems appropriate.

Fig. 6 displays the simulation setup in network simula-
tor 2 (ns-2) [18]. The use of the links was 90%, the average
round-trip time was on the order of 40 ms, and the asym-
metry between the forward and reverse path is depicted
in Fig. 7. The inter-departure time of the NTP packets
remains 1000 ms.

Figs. 8 and 9 show in a sample run how well the Kalman
filter locks onto the correct interarrival time δt and fre-
quency offset value (φ − 1). Fig. 10 shows how well the
ATD technique (with the exponential filter) locks onto the
frequency offset value (φ − 1). The internal line is the fil-
tered waveform through a low pass filter. Fig. 11 displays
the one-way delay across the reverse path as a function
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Fig. 8. Predicted interarrival and measured interarrival interval using
the Kalman filter for self-similar cross traffic.

Fig. 9. Estimation of frequency offset φ − 1 using the Kalman filter
for self-similar cross traffic.

Fig. 10. Estimation of frequency offset φ−1 using the ATD technique.
Low pass filtering of data is also plotted.

Fig. 11. Delay Cn
4 −tn3 from the reverse path and clock line estimation

using LP for self-similar cross traffic.

Fig. 12. Histogram of the frequency offset estimates for self-similar
cross traffic.

of time. The trend of the plot is coherent with the fol-
lowing derivation. The clock line φ̂ tn3 + θ̂ with parameters
estimated by the LP technique also is depicted:

(21) ⇒
Cn

4 − tn3 = (φ − 1) tn3 + φ (dn
2 + qn

2 ) + θ ⇒
Cn

4 − tn3 ≥ (φ − 1) tn3 + φdn
2 + θ. (34)

Fig. 12 shows the histogram of frequency offset esti-
mates for the self-similar case, for N = 100, and Fig. 13
shows the performance of the three algorithms in the esti-
mation of frequency offset, for various number N of packets
used in the calculation. Time offset estimation θ̂ resulted
in significant errors due to asymmetry between forward
and reverse path, as expected (Fig. 14).

From the above diagrams, it is deduced that the Kalman
filtering technique no longer produces the best estimates
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Fig. 13. Frequency offset estimate and standard deviation for self-
similar cross traffic as a function of number N of packets used in
calculation.

Fig. 14. Time offset estimate and standard deviation as a function
of N (number of packets used), for self-similar traffic.

with the smallest variance. The noise is no longer Gaus-
sian, so Kalman filtering is not optimal and LP performs
better in the presence of bursty traffic both in terms of
estimation error (accuracy) and its variance (precision).
For the same reason (burstiness and asymptotically long-
range dependence as opposed to the Gaussian distribution
around the mean), ATD and naive estimator perform infe-
riorly than the LP technique. All algorithms for frequency
offset estimation reduce the standard deviation (and there-
fore variance) of the estimate with increased number N of
packets used, and the relation between that improvement
and N seems linear (therefore, variance drops with N2),
as can be seen in Fig. 13.

TABLE I
Frequency Offset Estimation Using an Existing NTP/GPS

Server.

Kalman LP ATD

φ̂ − 1 (PPM) 101.6 54.7 122.7

C. Measurements

In order to emphasize the end-to-end character of the
algorithms evaluated (especially for the case of Kalman
filtering and LP), we modified NTP client daemon and ex-
changed 100 packets at intervals of 1 s with a stratum-0
server (connected to GPS). The time server was geograph-
ically located at Palo Alto, CA, 3100 miles away from our
client machine, with average round-trip time 85 ms, 18
hops away. We then processed the packets according to
the algorithms evaluated above, and the frequency offset
estimation results are presented at Table I.

An interesting idea could be averaging the two estimates
calculated according to Kalman and LP because the for-
mer performed better at the Gaussian case and the latter
at the self-similar one.

V. Conclusions

The Kalman filtering technique, optimal for the Gaus-
sian case, needed a considerable number of packets in order
to converge (on the order of 20–30 packets for the for-
mulation adopted and the experimental setup). Neverthe-
less, the technique performed well at the self-similar case
as well, with improved performance in terms of error and
variance of the estimate when the number of packets N in-
creased. The algorithm estimates the variance of network
delay (jitter) and uses that estimate to calculate the fre-
quency and time offset model variables. The algorithm can
be applied without major operation requirements in the
NTP-client daemon and requires no modifications in the
NTP-server daemon. It could benefit by scheduled trans-
mission from the client system that ensures minimum de-
lay variance due to the operating system.

The linear prediction technique surpassed all the other
techniques at the case of bursty traffic approximating real-
word, long-range dependence (chaotic) conditions, even
though it had inferior performance when measurements
were completely independent. Its intuitive structure makes
it attractive for straightforward implementation.

Averaging as exploited and implemented in the averag-
ing time differences technique (where equal intervals be-
tween measurements were used, and, therefore, averag-
ing differences of time were equivalent to averaging fre-
quency offset estimates) performed inferiorly to the LP
and Kalman filtering techniques at the self-similar case
in which measurements are not independent. However, its
simplicity makes it attractive, especially at the cases in
which a small number of measurements are available or
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a trade-off between accuracy and the cost of realizing it
cannot be avoided.

All three techniques showed improvement in terms of
frequency offset estimation error and variance of the esti-
mate with an increasing number of packets N . For Kalman
filtering, the relationship between improvement and N
seems linear (for standard deviation of frequency offset
estimate) or quadratic (for variance of frequency offset es-
timate) and, therefore, increased accuracy is expensive in
terms of number of packets used (communication band-
width). This work tried to quantify that cost, by compar-
atively evaluating a number of diverse techniques.
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