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Abstract—This work revisits particle filtering RFID local-
ization methods, solely based on phase measurements. The
reader is installed on a low-cost robotic platform, which per-
forms autonomously (and independently from the RFID reader)
open source simultaneous localization and mapping (SLAM).
In contrast to prior art, the proposed methods introduce a
weight metric for each particle-measurement pair, based on
geometry arguments, robust to phase measurement noise (e.g.,
due to multipath). In addition, the methods include the unknown
constant phase offset as a parameter to be estimated. No reference
tags are employed, no assumption on the tags’ topology is
assumed and special attention is paid for reduced execution
time. It is found that the proposed phase-based localization
methods offer robust performance in the presence of multipath,
even when the tag phase measurements are variable in number
and sporadic. The methods can easily accommodate a variable
number of reader antennas. Mean absolute localization error,
relevant to the maximum search area dimension, in the order of
2% - 5% for 2D localization and 9.6% for 3D localization was
experimentally demonstrated with commodity hardware. Mean
absolute 3D localization error in the order of 24 cm for RFID
tags in a library was shown, even though the system did not
exploit excessive bandwidth or any reference tags. As a collateral
dividend, the proposed methods also offer a concrete way to
classify the environment as multipath-rich or not.

I. INTRODUCTION

RFID localization has been attracting considerable excite-
ment within the RFID and wireless research community. A
growing interest has been observed lately, perhaps due to
the following reasons: a) improved tag chip sensitivity and
respective reading range and b) availability of channel state
information (CSI), including RSSI and phase, from commodity
readers. Even though RSSI has been extensively exploited in
RF localization research, phase-based techniques have recently
appeared in the RFID localization literature [1]–[8].

Phase measurements introduce by definition an ambiguity
in distance, measured in wavelength multiples (for one-way
wireless communication) or half-wavelength multiples (for
roundtrip backscatter communication). Such ambiguity can be
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mitigated exploiting various wavelengths and increased band-
width [9] or mobility, i.e., taking measurements at multiple
positions, with either the tags or the reader in motion [2],
[5]–[8]. Motion of the reader imposes additional challenges,
such as reader location estimation [7], further challenging
the tag localization problem. Other techniques include angle-
of-arrival estimation through mobility of the reader [10] or
reference tags at known locations (e.g. [6], [10]). Furthermore,
RFID tag localization based on excessive bandwidth [11] has
been also proposed. Super-resolution techniques based on tens
of megahertz bandwidth and multi-antenna terminals have
been also studied in the context of wireless CSI-based WiFi
localization [12]. Even though excessive bandwidth assists in
impressive localization accuracy, Gen2 RFID operation (e.g.,
in European UHF ISM bands) is not compatible with tens of
megahertz bandwidth. The literature is constantly evolving and
the above list, is by no means complete.

An important limitation in phase-based localization tech-
niques is due to wireless multipath. In an effort to mitigate
multipath, phase-based localization methods typically require
a large number of measurements. This work revisits particle
filtering (PF) localization methods, solely based on phase; it
is shown that the proposed methods are robust to sporadic and
variable number of measurements. The reader is installed on a
low-cost robotic platform, which performs autonomously (and
independently from the RFID reader measurements) simulta-
neous localization and mapping (SLAM), with open source
algorithms. The goal is to localize commodity, wide-spread,
Gen2 RFID tags, without any reference tags, while operating
in multipath-rich environments under limited bandwidth. A 2D
and a 3D localization scenario examined can be seen in Fig. 4
and Fig. 7, respectively.

Compared to phase-based localization research [3], [6], [7],
our particle filtering methods introduce a different distance
metric of each particle-measurement phase pair, based on
geometry arguments, more robust to phase measurement noise
(e.g., due to multipath). In contrast to [7], the methods include
the unknown constant phase offset as a variable (or a param-
eter) to be considered and estimated, while no assumption is
made on the 3D topology of the tags to be localized. Work in
[13] used PF but without phase measurements. No reference
tags are used in this work; in addition, no special exploitation
of the reader antenna characteristics (e.g., gain and directivity)
[14] is made, that could assist in the localization process. In
addition, the method directly accommodates variable number
of reader antennas and special attention is paid for reduced



IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION 2

execution time.
Section II offers the system model and Section III presents

basic calculations with phase measurements; Section IV de-
scribes the phase-based particle filtering method and its vari-
ations, highlighting the differences with prior art; Section V
offers the experimental results; finally, work is concluded in
Section VI.

Notation: ∠z denotes the phase of complex number z,
N (x,m, σ2) stands for the normal distribution with mean
m, variance σ2, evaluated at x, U [a, b] denotes the uniform
distribution in [a, b] and N, Z denote the set of natural and
integer numbers, respectively.

II. SYSTEM MODEL

RFID tag location is denoted as xT
4
= [xtag ytag ztag]

T

and similarly, reader location as xR. It is further assumed
that measured phase at the reader φ[t]

meas at time t is also
accompanied by knowledge of the reader location x[t]

R at that
measurement instance. Modeling of φ[t]

meas follows, with time
dependence (temporarily) dropped, for clarity.

RFID reader transmits a signal with carrier frequency fc
and phase φR; the received carrier signal at the tag will be
received with a time delay of τ = d0/c = d0/(λfc), where
d0
4
= ||xR − xT||2 is the Euclidean distance between reader

and tag antennas, c is the speed of light and λ is the carrier
wavelength; this is equivalent to a signal received at the tag
with phase as follows:

φR − 2πfcτ = φR − 2πd0/λ = φR − k d0,

where k = 2π/λ is the angular wavenumber. Thus, the (one-
way) flat-fading wireless channel induces a phase of −kd0,
assuming no other propagation paths.

In case of multipath between reader and tag, the (one-way)
flat fading channel can be written as follows:

h = a0e
−jkd0︸ ︷︷ ︸

direct path

+

Nm∑
i=1

aie
−jkdi

︸ ︷︷ ︸
multipath

(1)

= a0e
−jkd0︸ ︷︷ ︸
h0

(
1 +

Nm∑
i=1

ai
a0
e−jk(di−d0)

)
︸ ︷︷ ︸

hm

(2)

= h0 hm, (3)

where di is the length of the i-th propagation path (out of Nm),
that depends on the location of the reflectors, as well as the
locations of the reader and tag, while complex coefficients
ai, i ∈ {1, . . . ,Nm} depend on space geometry, reflector’s
dielectric constants and antenna gains. Thus, the induced phase
of the roundtrip (two-way) propagation channel h2 (i.e., from
reader-to-tag and back) can be written as follows:

φprop ≡ ∠h2 = 2 (∠h0 + ∠hm) = −2kd0 + 2∠hm. (4)

The measured phase at the reader is also affected by the
tag itself, since the tag’s reflection coefficient depends on the
terminating load, which in turn, depends on tag’s received

power; the latter is due to various reasons, including the non-
linear rectifier at the RFID tag that harvests energy from
the incoming RF signal. Thus, the tag itself induces in the
phase measurement a term of φtag [1] that depends on reader’s
transmit power, reader’s location and tag’s location (since that
term depends on tag’s received power). In addition to that,
there are additional delays due to cabling (corresponding to
constant phase offset φ̂0), as well as phase noise φ̂n at the
reader’s receive chain:

φout = φR + φprop + φ̂0 + φtag + φ̂n, (5)

= −2kd0 + φR + φ̂0︸ ︷︷ ︸
θ

+ 2∠hm + φtag + φ̂n︸ ︷︷ ︸
φn

, (6)

= −4πd0

λ
+ θ + φn. (7)

Thus, the received phase can be safely modeled by Eq. (7),
where the (useful) term −2k||xR − xT||2 is perturbed by a
constant unknown phase term θ and a variable unknown term
φn. In rich multipath conditions, φn can vastly change (due
to ∠hm), even with location changes of the tag or the reader,
in the order of a fraction of one wavelength. Thus,

φout 6= φout(d0), (8)

or in other words, end-2-end phase φout does not only depend
on distance between tag and reader; it also depends on the
specific tag and reader utilized, as well as on the environment.

From Eq. (7) it can be seen that any distance d0 with

d0 = δρ+ nλ/2, n ∈ N, δρ ∈ [0, λ/2), (9)

where δρ equals to d0 mod λ/2, outputs the same phase mea-
surement for given value of noise. Thus, phase measurements
introduce distance ambiguity that must be explicitly addressed
by the localization algorithm.

The reader typically reports a value in [−π, π) or [0, 2π).
The reader in the conducted experiments utilize the latter, and
thus,

φmeas = φout mod 2π, (10)

(∗)
=

−4πd0

λ
mod 2π + θmod 2π︸ ︷︷ ︸

φ̂

+φn mod 2π︸ ︷︷ ︸
φ̂n

 mod 2π,

=

[
−4πd0

λ
mod 2π + θ̂ + φ̂n

]
mod 2π, (11)

where in (∗), the property (α + β) mod γ =
[(α mod γ) + (β mod γ)] mod γ was exploited and
both θ̂, φ̂n have support in [0, 2π).

III. PHASE-BASED PRELIMINARIES

It is common in the literature to find expressions of the
measured phase, as in Eq. (7), omitting the minus sign, i.e.,

φout = +
4πd0

λ
+ θ + φn. (12)

That is also valid, since the sign of the channel-dependent
term 4πd0

λ informs whether phase is added or subtracted to
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the phase of the reader, while no assumption has been made
on the value of the unknown constant noise term θ in Eq. (7).

However, the transformation from phase measurement φ
to distance d0 and vice versa, should explicitly state which
formula is used; this is important, since φ− 6= φ+, for phases
defined as:

φ− = −4πd0

λ
mod 2π, (13)

φ+ = +
4πd0

λ
mod 2π. (14)

For any φ ∈ [0, 2π), it can be easily seen that δρ in Eq. (9) is
given as follows:

δρ =

{
λ
2

(
1− φ

2π

)
, for φ = − 4πd0

λ mod 2π,

λ φ/(4π), for φ = + 4πd0
λ mod 2π.

(15)

Therefore, any phase-based localization algorithm should
explicitly state which transformation of the two in Eqs. (13),
(12) exploits.

IV. ROBUST DISTANCE-BASED PARTICLE FILTERING
METHODS (RDPF)

Assume a given pair (φ
[t]
meas,x

[t]
R ) of phase measurement

and respective reader location. Testing whether a particular
tag location x∗T

4
=
[
x∗tag y

∗
tag z

∗
tag

]T
is likely to produce such

specific phase measurement requires the conditional likelihood
pdf p (·|·) of phase measurement given the specific tag loca-
tion:

w∗ = p
(
φ[t]

meas|x∗T,x
[t]
R

)
. (16)

Testing various possible samples of tag locations and acquiring
the respective weights can, in principle, offer the expected
value of the unknown tag location (or the expected value of
any function of the unknown location). The basic requirement
is that the number of samples (or particles) must be sufficiently
large. Particle filtering is based on the theory of importance
sampling and has been extensively used in the robotics com-
munity.

An implicit requirement is knowledge of the conditional
likelihood pdf. One approach followed in [7] is to convert
distance d = ||x[t]

R −x∗T||2 to phase φ∗ ∈ [0, 2π) using Eq. (13)
(or (14)) and utilize distance δφ = |φ∗ − φ[t]

meas| as a metric,
through a Gaussian Kernel [7, page 6]):

w∗ ∝ e−δφ
2/(2σ2

φ).

Distance metric equal to δφ = |φ∗−φ[t]
meas| between measured

phase φmeas and expected (noiseless) phase φ∗ for a given tag
location, has been also used in [3, Eq. (8)] and [6, Eq. (5)].

This work follows a different approach that explicitly ac-
commodates phase measurement noise (due to multipath or
other sources); if φ∗ = δε → 0+ and φ[t]

meas = 2π − δε → 2π,
then δφ = 2π − 2δε → 2π, i.e., the distance metric assumes
a large value and correspondingly, the weight will be small.
Due to multipath and other noise sources (shown in Eq. (7)), as
well as the modulo operation, a small perturbation of an angle
close to 0 may change it to a new value close to 2π. Thus, the
distance metric between an angle close to 0 and an angle close

A
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δ 2
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Fig. 1: Visualization of the smallest distance ∆ between a
given sample point in space (B) for a given RFID phase
measurement, converted to distance. The color shade depicts
the weight values according to Eq. (25). Reader is located at
point R.

to 2π should be small and the corresponding weight should be
large. The following approach accommodates the above and
utilizes distances instead of phases to find out the appropriate
weight metric.

Specifically, using Eq. (15) and Eq. (9) the measured phase
φ

[t]
meas is converted to distance. The latter defines in 2D (3D),

the concentric circles (spheres), centered at the corresponding
robot location, where the tag is located (based on the measure-
ment). The closest distance between these circles (spheres) and
x∗T defines the utilized metric ∆ of this work.

Fig. 1 assists in visualizing the above; d = ||x[t]
R −x∗T||2 is

converted to the expression of Eq. (9), with δρ = d mod λ/2.
Thus, for each sample and given phase measurement there are
totally two distance equations of the following form:

δ1 = δρ1 + n1(λ/2), n1 ∈ N, (17)
δ2 = δρ2 + n2(λ/2), n2 ∈ N, δρ1 > δρ2, (18)

with both δρ1, δρ2 ∈ [0, λ/2). Which of the two equations
above correspond to phase measurement or particle distance
is not needed; d1 simply corresponds to the equation with the
largest δρ. With the help of Fig. 1 and simple calculations, it
is easy to see that the minimum distance ∆ described above
is given by:

∆ = min(δ1, δ2) = min

(
δρ1 − δρ2,

λ

2
− (δρ1 − δρ2)

)
.

(19)

Notice that the case of a pair of phases described above,
where one is close to 0 (rad) and another close to 2π (rad)
corresponds to a pair of δρ1, δρ2 where the first is close to
λ/2 (m) and the second is close to 0 (m). The above formula
will offer a small distance metric ∆.

In addition, this work explicitly takes into account the
constant offset θ. Prior work in [7] did not include it in the
particle filter parameters, since specific tag topologies were
tested (i.e., tags at the same height). This work will not assume
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specific RFID topologies. Assuming a sample value θ∗, the
following steps are needed:

φ∗ =
(
φ[t]

meas − θ∗
)

mod 2π, (20)

δρφ =

{
λ
2

(
1− φ∗

2π

)
, if φout = − 4πd0

λ + θ + φn,

λ φ∗/(4π), if φout = + 4πd0
λ + θ + φn,

(21)

δρd = ||x[t]
R − x

∗
T||2 mod λ/2, (22)

δρ1 = max(δρφ, δρd), (23)
δρ2 = min(δρφ, δρd), (24)

and δρ1, δρ2 are used as input to Eq. (19). Notice that
expression in Eq. (21) above changes according to which phase
vs distance transformation is adopted, i.e., Eq. (13) or (14).

With this metric ∆, weight particle is given as follows:

w∗ ∝ e−∆2/(2σ2), (25)

where σ has units of distance and σ2 depends on the power
of the phase measurement noise, including all sources (e.g.
multipath). In strong multipath environments and measure-
ments spanning a large area (e.g., using a moving robot),
this value should be increased. It was experimentally found
that in low multipath conditions, values of σ around 0.1λ
worked best, while in strong multipath, values around of λ
were more suitable. In the numerical experiments below, the
value of σ was 0.1λ and λ in campaign 1 and campaigns 2-4,
respectively. An agnostic approach to classify the environment
will be described later, when RDPF2 is introduced.

For multiple measurements available for a given tag, the
measurements are assumed independent and for a given sam-
ple, there are as many weights as the number of measure-
ments; thus, for each sample (particle), the overall weight
is the product of the weights. Variations of the algorithm
can include resampling of the weights, e.g., using the low-
variance resampler [15], with or without replacement of the
particles. Given that the RFID tags (target to be located) in
the experiments are static, we omitted the resampling step;
improvements due to resampling are smaller in static than in
mobile target localization [15].

The algorithm is summarized as RDPF1 below; initialization
of the particles assumes a uniform distribution per dimension
and requires boundaries of the search area space; the latter
is 4−dimensional for 3D localization and 3−dimensional
for 2D localization, due to the existence of offset θ. Other
initialization distributions are possible. In order to utilize
the algorithm’s capacity to accommodate multiple antennas,
we just need to provide the measurement pairs (line 11)
as
{
φ

[t]
meas,x

[t]
A

}
, where x[t]

A is the reader antenna’s location,
treating measurements of different antennas simply as unique
measurements. The algorithm runs independently N times1 for
the same measurement data to extract statistical data. In the
general case only one repetition is needed for RDPF1.

1100 times in campaigns 1-3 and 10 in campaign 4, in numerical results.

RDPF Algorithm: RDPF1

1: Initialization of Variables:
2: Set M (number of Particles), N (number of Epochs)
3: Set Xa

min, X
a
max, Y

a
min, Y

a
max, Z

a
min, Z

a
max, θmin, θmax (search

area dimensions)
4: Set T (time window of collected phase measurements)
5: for n = 1 : N do
6: Initialization of All Particles: ∀ m = 1 : M
7: x[m] ∼ U [Xa

min, X
a
max], y[m] ∼ U [Y amin, Y

a
max],

8: z[m] ∼ U [Zamin, Z
a
max]

9: θ[m] ∼ U [θamin, θ
a
max]

10: χ[m] =
[
x[m] y[m] z[m] θ[m]

]T
11: Select T measurement pairs

{
φ

[t]
meas,x

[t]
R

}
12: Initialize all particle weights: w[m] = 1,∀m = 1 : M
13: for t = 1 : T do { measurement index}
14: for m = 1 : M do { particle index }
15: Set x∗T =

[
x[m] y[m] z[m]

]T
from χ[m]

16: Set θ∗ = θ[m] from χ[m]

17: Calculate δρ1, δρ2 (in m) from Eqs. (20)-(24)
18: Calculate ∆ (in m) from Eq. (19)
19: w[m] = w[m] p

(
∆|χ[m]

)
≡ w[m] N

(
∆; 0, σ2

)
20: end for
21: Weight Normalization:
22: w[m] = w[m]/

∑M
m=1 w

[m], ∀m = 1 : M
23: % Optional: Low Variance Particle Resampling
24: end for
25: x̂

[n]
T =

∑M
m=1 w

[m] χ[m] =
[
x̂

[n]
tag ŷ

[n]
tag ẑ

[n]
tag θ̂[n]

]T
26: end for

A. Modifications for Accelerated Execution: RDPF2

In an effort to keep offset θ as an unknown, while reducing
the execution time, the above algorithm is modified. Each
sample contains only the tag coordinates and not θ, while
the external loop (line 5) tests a specific θ, common for
all particles. In that way, the same number of particles M
corresponds to a smaller search space or equivalently, a smaller
number of particles can be exploited.

In this second version, coined as RDPF2, line 9 is omitted
and initialization is modified to search θ with resolution δθ =
(θmax−θmin)/N (N was set to 100 for observations while lower
numbers also perform similarly). The set of measurements is
used again over every tested value of θ and the algorithm
reports the mean of the tag’s location across all tested values
of θ. The following lines of RDPF1 are modified:

10: χ[m] =
[
x[m] y[m] z[m]

]T
16: Set θ∗ = θmin + (n− 1) δθ

25: x̂
[n]
T =

∑M
m=1 w

[m] χ[m] =
[
x̂

[n]
tag ŷ

[n]
tag ẑ

[n]
tag

]T
and line 27 was added to report final location estimate:

27: x̂T = 1
N

∑N
n=1 x̂

[n]
T = [x̂tag ŷtag ẑtag]

T

Experimental results show that RDPF2 can run one order of
magnitude faster than RDPF1, while retaining comparable per-
formance. Moreover, it was found experimentally that the tag
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location estimate varies almost continuously, across different
values of θ in light multipath, as opposed to rich multipath
environments. Thus, RDPF2 could be further examined as a
potential classifier of the environment, in terms of multipath
richness. Additionally, a single random θ value could be
chosen and this method could produce satisfactory results in
a fraction of the time.

V. PERFORMANCE EVALUATION

Four indoor experimental campaigns were conducted, with
an Impinj Speedway R420 RFID reader. Using Impinj’s LTK
API, a software was developed to control the reader’s param-
eters. One MTI MT-242032 7 dBic reader antenna and up to
three FlexiRay SF-2110 5 dBi antennas were utilized. Reader
transmission (Tx) power was configured in the range of 20
dBm to 30 dBm.2 In all campaigns, increasing the reader Tx
power also increased the number of tag measurements. In the
first campaign (Fig. 2) the tag was successfully interrogated
at 56 and 20 positions, at Tx power of 30 and 20 dBm,
respectively. For the second and third (Fig. 4) campaigns,
each tag was interrogated approximately 900 times at 30
dBm and about 400 times at 20 dBm. For the fourth and
last campaign, each tag was interrogated about 300 times (4
tags could not be interrogated) and about 100 times (51 tags
could not be interrogated) at 30 and 20 dBm, respectively.
Due to the low percentage of unique tags being successfully
interrogated, the 20 dBm measurements were not used in
this campaign. For comparison purposes, two state-of-the-art
phase-based methods were also implemented: BackPos [4] and
Relock [8]. Mean absolute localization error (MAE) E[|e|] and
root mean squared localization error (RMSE)

√
E[|e|2] will be

utilized, with e
4
= ||x̂T − xT||2.

A. Light-multipath (Campaign 1)

In the first campaign (Fig. 2), a single MTI MT-242032
antenna was connected to the reader via a 0.9 dB loss coaxial
cable and an Alien ALN-9540 (Higgs-2) tag was placed at
a fixed location in an open-space indoor environment. The
antenna was moved manually along a 3 m line at intervals of
5 cm, while the tag was placed at the bisector of the antenna’s
trajectory at a distance of 1 m. The antenna and the tag were
placed at a height of 1.52 m. At every position of the antenna,
tag interrogations were conducted for 4 secs per Tx power
level.

Following the acquisition of the measurements, for every
position and power level, a modified mean of the phase
was calculated. This modification was necessary due to the
noise induced on the measurements by the environment and
the electrical components of the equipment. For example, at
distance that should correspond to a phase measurement close
to 360◦ (or 0◦), even a small noise perturbation can push
some measurements over 360◦ (or below 0◦) resulting in some
measurements appearing in the 0◦ (or 360◦) region because of
phase wrapping. Thus, a classic mean approach would result

2Cable losses as well as reader’s output power were measured using a VNA
and a spectrum analyzer, respectively.

Fig. 2: Baseline experimental campaign 1: light multipath
environment with manual movement of the reader antenna.
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Fig. 3: Campaign 1 localization error vs Tx power.

in a value shifted to the center of the phase spectrum, failing to
produce a useful value. Instead, when such cases are detected
the following approach is utilized: the phase range is divided
in two regions, 0-180◦ and 180-360◦. The measurements of
the least populated region are wrapped around (e.g. values in
0-10◦ would be mapped to 360-370◦) and then the mean is
calculated applying a modulo operator if needed.

Results for this campaign are depicted in Fig. 3. All methods
performed satisfactorily in terms of MAE, with satisfying
results below 2 cm for higher Tx power (as shown in Fig. 3).
Such absolute error corresponds to less than 2% of the tag-
to-reader range, set at 1 m in the first campaign. However
we noticed that ReLock’s performance is improving with the
number of measurements, while RDPF1 and RDPF2 do not
seem to be affected. BackPos was also found to be sensitive
on the number of available measurements, while the increase
of error with larger Tx power is probably due to stronger
multipath when Tx power is increased.

For the RDPF methods, the search area used for the initial-
ization of the particles was set to 1 m × 1 m. The number
of particles was set to M = 105 for RDPF1 and M = 104

for RDPF2, since the latter does not randomize the θ in each
particle, but instead uses a common θ for all particles and thus,
needs less particles to populate the search space adequately.
Notice that due to the same height of tags and reader antenna,
the tag localization problem has two unknowns xtag, ytag, in
order to compare with BackPos, which is a 2D tag localization
method by construction. Execution times were all under 1 sec,
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due to the relatively low number of measurement locations.

B. Rich-multipath (Campaigns 2-3)

In the second campaign, the manual reader movement setup
of campaign 1 was utilized, but in a multipath richer environ-
ment, with two variations: A) 15 tags on books, packed on a
bookshelf, with an average distance of 5.5 cm, and B) only the
two books at the opposing ends of the bookshelf are equipped
with a tag, as shown in the right part of Fig. 4. Reader, antenna
and cables were the same as before. Measurements were taken
every 5 cm, the same way as in the first campaign. The purpose
of this campaign was to test the algorithms, without worrying
about the robot-reader (used in the next campaigns) self-
localization error, while inducing additional reflections and
multipath among tags; additionally, the close proximity among
tags in case A pushed their operational limits, due to coupling.
In this campaign, Alien ALN-9740 (Higgs-4) tags were used.
The results for case A are depicted in Table I. The presence
of multiple tags, next to each other, did not seem to produce
significant deviations in the performance of the algorithms, so
the results for case B are omitted. BackPos offered excessive
errors in some cases, probably due to stronger multipath and
was subsequently omitted from the following campaigns.

In the third campaign (Fig. 4), a custom robotic setup
was utilized with Tx power at 20 and 30 dBm: the robot
was a Turtlebot2 with a Kobuki mobile base for motion
support, equipped with a Hokuyo UST-20LX LIDAR sensor
for SLAM operations and the aforementioned reader. The
cable and antenna were replaced by smaller counterparts,
a 0.74 dB loss coaxial cable and a FlexiRay SF-2110 5
dBi antenna. The antenna and the tags were placed at a
lower height of 1.1m further increasing the contribution of
multipath. For more accurate position estimation of the robot,
the map of the environment was first created using Google’s
Cartographer [16] and then during the experiments robot
localization was performed using AMCL [17]. The robot’s
speed was 10 cm/sec; measurements were taken continuously
and their distance on average was 0.5 cm. Again, Alien ALN-
9740 (Higgs-4) tags were used in this campaign. Results are
shown in Table I and Fig. 5.

In both second and third campaigns, RDPF1 and RDPF2
offered similar results and in general outperformed ReLock
and BackPos at the lower transmission power of 20 dBm.
Since Tx power controlled the number of measurements, it
can be safely concluded that RDPF1 and RDPF2 offer robust
estimates when number of measurements is variable. Table I
offers e, as well as ex

4
= |x̂tag − xtag| (i.e., error across the

x-axis, which is parallel to the bookshelf), for three tags.
Minimum error value per scenario (i.e., campaign and Tx
power) among the compared methods is presented in bold.

For the RDPF methods, the search area and particle numbers
were the same as before. RDPF1 execution time per repetition
per RFID tag for the worst case (i.e., largest number of mea-
surements) was 2.5 sec, while RDPF2 required 0.25 sec per
value of θ per tag. For ReLock we implemented a pre-filtering
algorithm that finds the maximum window of consecutive
measurements so that every location of measurement is within

Fig. 4: Campaigns 2-3: indoor harsh multipath environment a
commercial RFID reader on an autonomous robotic platform
scans and localizes the tags.
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Fig. 5: Campaign 3 (moving robot) average absolute error
between 2 standard deviations across all 15 bookshelf tags.

5 cm of the next one. That is because ReLock requires that the
phase between two consecutive measurement locations does
not change drastically, so that phase unwrapping can function
reliably. ReLock execution time per tag at the same processing
unit for the largest number of measurements was 0.25 seconds.
Taking in mind that the robot moves at rate of 10 cm/sec, a
3-meter trajectory required 30 sec; thus, for the considered
scenarios, all the above methods can be considered as “real-
time”.

Fig. 5 presents the third campaign’s average value of e
and ex (rectangles) across all 15 tags, within two standard
deviations (the vertical lines span 2 standard deviations); at
30 dBm it was observed that the methods perform adequately
with error ex below 5 cm, which corresponds to relative
(to tag-reader distance) error below 5%; however, the RDPF
methods presented smaller variance, with standard deviation
in the order of 2 cm at 30 dBm Tx power; for the case of
20 dBm Tx power, RDPF1 and RDPF2 outperform Relock,
probably due to sensitivity of the latter to the available number
of measurements. In terms of average e, RDPF1 and RDPF2
demonstrated approximately 15 cm (corresponding to 15%
relative to distance error) with standard deviation of 5 cm at
20 dBm, where Relock showed increased error, due to smaller
number of measurements. Interestingly, e for RDPF1, RDPF2
was smaller in 20 dBm than in 30 dBm.

Finally, Fig. 6 depicts estimated ŷtag of RDPF2 as a func-
tion of θ, for first campaign (LOS/light multipath) and third
campaign (strong multipath). It can be seen that ŷtag varies
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TABLE I: Experimental results of the bookshelf campaigns with all 15 tags placed (case A).

Tag ID

#20 leftmost tag #12 center tag #6 rightmost tag

E[|e|] (m) E[|ex|] (m) E[|e|] (m) E[|ex|] (m) E[|e|] (m) E[|ex|] (m)

C
am

pa
ig

n
2

-
M

an
ua

l ReLock
20dBm 0.225 0.033 0.755 0.104 0.112 0.013

30dBm 0.016 0.012 0.032 0.025 0.048 0.012

RDPF1
20dBm 0.063 0.006 0.102 0.036 0.029 0.013

30dBm 0.103 0.012 0.087 0.017 0.018 0.014

RDPF2
20dBm 0.067 0.006 0.109 0.036 0.050 0.013

30dBm 0.106 0.012 0.079 0.018 0.051 0.013

BackPos
20dBm 0.223 0.043 0.361 0.041 0.194 0.001

30dBm 0.186 0.165 0.091 0.075 0.294 0.293

C
am

pa
ig

n
3

-
R

ob
ot ReLock

20dBm 0.630 0.211 0.411 0.066 0.621 0.197

30dBm 0.363 0.090 0.172 0.036 0.251 0.058

RDPF1
20dBm 0.182 0.099 0.132 0.021 0.104 0.008

30dBm 0.254 0.068 0.158 0.046 0.138 0.051

RDPF2
20dBm 0.181 0.099 0.132 0.021 0.102 0.009

30dBm 0.251 0.067 0.158 0.046 0.137 0.051

smoothly in light multipath environments (campaign 1), as
opposed to strong multipath (campaign 3). This observation
can be further exploited for classification purposes of the
environment, as multipath-rich or not. For a multipath-poor
environment, methods like BackPos will be very useful. More-
over, the same plot implies that θ plays a more important role
in light multipath, as opposed to rich multipath environments.
These topics will be further examined in future work.

0 100 200 300 400
0.9

0.95

1

1.05

1.1
LOS vs Multipath

LOS

Multipath

Fig. 6: Visualization of ŷtag with respect to θ for two different
environments: LOS/light multipath (campaign 1) vs strong
multipath (campaign 3). This behavior could be exploited for
classification of the environment as multipath-rich or not.

C. Rich-multipath - 3D Results (Campaign 4)

In the fourth and final campaign, the robotic setup was
utilized once more in a different, multipath-rich environment
in order to test the algorithms on multiple environments as
well as their performance in 3D localization. There were 70
tags, placed on the backs or the insides of books, having
different orientations with respect to the movement of the
robot-antennas. The books were atop of metallic shelves,
which further increases reflections, at different heights ranging
from 0.15 to 2.3 m. The topology can be seen at Fig. 7 and the

actual trajectory of the robot, as computed by Cartographer,
is shown in Fig. 8.

Regarding the robotic platform, a longer pole was attached
so it could accommodate more antennas at larger heights.
The number of FlexiRay SF-2110 antennas increased to 3,
at heights 1.06, 1.46 and 1.86 m, increasing the area in which
tags can be successfully interrogated and resolving localization
ambiguity in the vertical z-axis. The search space for this
campaign was increased to a 2.5 m × 1 m × 2.5 m space
while the particle number remained at 105. To the best of our
knowledge, ReLock does not simultaneously utilize multiple
antennas, so it was omitted from this campaign. As it can be
seen from the results in Table II, RDPF1 can reliably locate the
tags in a 3D space, while having a performance boost with the
increase of the number of available measurements. Especially
for the cases where the number of measurements is over 200
(average number of measurements is 300), our method can
locate the tags with a MAE of 24 cm; the latter corresponds

Fig. 7: Campaign 4: topology of RFID tags, trajectory (left)
and robotic reader setup (right).
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Fig. 8: Campaign 4: Real map of the library produced by the
Cartographer algorithm, including robot’s estimated trajectory.

to 9.6% of the maximum search space dimension (i.e., 2.5 m
in this example). The worst execution time of RDPF1 for the
3D case was 5 sec due to increased number of measurements.

TABLE II: 3D Experimental Results Across 70 Tags.

E[|e|] (m)
√

E[|e|2] (m)
Measurements per tag > 50 0.31 0.38
Measurements per tag > 100 0.29 0.36
Measurements per tag > 200 0.24 0.26

VI. CONCLUSION

The proposed phase-based localization method offered ro-
bust performance in the presence of multipath, even when
the tag phase measurements are variable in number and
sporadic. The method can easily accommodate a variable
number of reader antennas and exploits reader mobility, as
well as autonomous robot-reader self-localization. Decimeter-
level localization error for RFID tags in a library was shown,
even though the system did not exploit excessive bandwidth or
any reference tags. A classification method was also found that
could assist in characterising the environment as multipath-rich
or not. Special attention was also given in order to accelerate
algorithm execution for real-time operation, matched with the
speed of the robot. Future work will further examine ways that
exploit robotics in multipath mitigation.
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