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Abstract—Channel state information (CSI) at the base station
(BS) is crucial to achieve beamforming and multiplexing gains in
multiple-input multiple-output (MIMO) systems. State-of-the-art
limited feedback schemes require feedback overhead that scales
linearly with the number of BS antennas, which is prohibitive for
5G massive MIMO. This paper proposes novel limited feedback
algorithms that lift this burden by exploiting the inherent sparsity
in double-directional MIMO channel representation using over-
complete dictionaries. These dictionaries are associated with angle
of arrival and angle of departure that specifically account for an-
tenna directivity patterns at both ends of the link. The proposed
algorithms achieve satisfactory channel estimation accuracy using
a small number of feedback bits, even when the number of trans-
mit antennas at the BS is large—making them ideal for 5G massive
MIMO. Judicious simulations reveal that they outperform a num-
ber of popular feedback schemes and underscore the importance
of using angle dictionaries matching the given antenna directivity
patterns, as opposed to uniform dictionaries. The proposed algo-
rithms are lightweight in terms of computation, especially on the
user equipment side, making them ideal for actual deployment in
5G systems.

Index Terms—Limited feedback, sparse channel estimation,
massive MIMO, double directional channel, antenna directivity
pattern.

I. INTRODUCTION

THE idea of harnessing a large number of antennas at the
base station (BS), possibly many more than the number

of user equipment (UE) terminals in the cell, has recently at-
tracted a lot of interest in massive multiple-input multiple-output
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(MIMO) research. The key technical reasons for this is that mas-
sive MIMO can enable leaps in spectral efficiency [1] as well as
help mitigating intercell interference through simple linear pre-
coding and combining, offering immunity to small-scale fading
– known as the channel hardening effect [2], [3]. Massive MIMO
systems also have the advantage of being energy-efficient since
every antenna may operate at a low-energy level [4].

Acquiring accurate and timely downlink channel state infor-
mation (CSI) at the BS is the key to realize the multiplexing and
array gains enabled by MIMO systems [2], [5]–[7]. Acquiring
accurate downlink CSI at the BS using only few feedback bits
from the UE is a major challenge, especially in massive MIMO
systems. In frequency division duplex (FDD) systems, where
channel reciprocity does not hold, the BS cannot acquire down-
link channel information from uplink training sequences, and
the feedback overhead may be required to scale proportionally
to the number of BS antennas [5]. In time division duplex (TDD)
systems, channel reciprocity between uplink and downlink is of-
ten assumed, and the BS acquires downlink CSI through uplink
training. Even in TDD mode, however, relying only on channel
reciprocity is not accurate enough, since the uplink measure-
ments at the BS cannot capture the downlink interference from
neighboring cells [8], [9]. Thus, downlink reference signals are
still required to estimate and feed back the channel quality indi-
cator (CQI), meaning that some level of feedback is practically
necessary for both FDD and TDD modes.

The largest portion of the feedback-based channel estimation
literature explores various quantization techniques; see [10] for
a well-rounded exposition. Many of these methods utilize a
vector quantization (VQ) codebook that is known to both the
BS and the UE. After estimating the instantaneous downlink
CSI at the UE, the UE sends through a limited feedback chan-
nel the index of the codeword that best matches the estimated
channel, in the sense of minimizing the outage probability [11],
maximizing link capacity [12], or maximizing the beamform-
ing gain [13], [14]. Codebooks for spatially correlated channels
based on generalizations of the Lloyd algorithm are given in
[15], while codebooks designed for temporally correlated chan-
nels are provided in [16]. Codebook-free feedback for channel
tracking was considered in [17] for spatio-temporally correlated
channels with imperfect CSI at the UE. Many limited feedback
approaches in MIMO systems consider a Rayleigh fading chan-
nel model [13], [14], [18], [19]. Under this channel model, the
number of VQ feedback bits required to guarantee reasonable
performance is linear in the number of transmit antennas at the
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BS [5] – which is costly in the case of massive MIMO. Yet
the designer is not limited to using VQ-based approaches, and
massive MIMO channels can be far from Rayleigh.

In this work, we consider an approach that differs quite
sharply from the prevailing limited feedback methodologies.
Our approach specifically targets FDD massive MIMO in the
sublinear feedback regime. We adopt the double directional
(DD) MIMO channel model [20] (see also [21]) instead of
the Rayleigh fading model. The DD channel model parame-
terizes each channel path using angle of departure (AoD) at
BS, small- and large-scale propagation coefficients, and angle
of arrival (AoA) at UE – a parametrization that is well-accepted
and advocated by 3GPP [22], [23]. We exploit a ‘virtual sparse
representation’ of the downlink channel under the double di-
rectional MIMO model [20]. Quantizing AoA and AoD, it is
possible to design overcomplete dictionaries that contain steer-
ing vectors approximating those associated with the true angles
of arrival and departure. Building upon [20], such representa-
tion has been exploited to design receiver-side millimeter wave
(mmWave) channel estimation algorithms using high-resolution
[24], or low-resolution (coarsely quantized) analog-to-digital
converters (ADCs) [25], [26].

In contrast, we focus on transmitter-side (BS) downlink chan-
nel acquisition using only limited receiver-side (UE) computa-
tion and feedback to the BS [27]. We propose novel optimization
formulations and algorithms for downlink channel estimation at
the BS using single-bit judiciously-compressed measurements.
In this way, we shift the channel computation burden from the
UE to the BS, while keeping the feedback overhead low. Using
the overcomplete parametrization of the DD model, three new
limited feedback setups are proposed:

� In the first setup, UE applies dictionary-based sparse chan-
nel estimation and support identification to estimate the 2D
angular support and the corresponding coefficients of the
sparse channel. Then, the UE feeds back the support of
the sparse channel estimate, plus a coarsely quantized ver-
sion of the corresponding non-zero coefficients, assuming
known thresholds at the BS. This is the proposed UE-based
limited feedback baseline method for the DD model.

� In the second setup, the UE compresses the received mea-
surements and sends back only the signs of the com-
pressed measurements to the BS. Upon receiving these
sign bits, the BS estimates the channel using single-bit DD
dictionary-based sparse estimation algorithms.

� The third setup is a combination of the first and the second,
called hybrid limited feedback: UE estimates and sends
the support of the sparse channel estimate on top of the
compressed sign feedback used in the second setup. Upon
receiving this augmented feedback from the UE, the BS
can then apply the algorithms of setup 2 on a significantly
reduced problem dimension.

For sparse estimation and support identification, the orthog-
onal matching pursuit (OMP) algorithm [28] is utilized as it
offers the best possible computational complexity among all
sparse estimation algorithms [29], which is highly desired for
resource-constrained UE terminals.

Contributions:
A new limited feedback channel estimation framework is pro-

posed exploiting the sparse nature of the DD model (setup 2).
Two formulations are proposed based on single-bit sparse
maximum-likelihood estimation (MLE) and single-bit com-
pressed sensing. For MLE, an optimal in terms of iteration
complexity [30] first-order proximal method is designed using
adaptive restart, to further speed up the convergence rate [31].
The proposed compressed sensing (CS) formulation can be –
fortuitously – harnessed by invoking the recent single-bit CS
literature. The underlying convex optimization problem has a
simple closed-form solution, which is ideal for practical imple-
mentation. The proposed framework shifts the computational
burden towards the BS side – the UE only carries out matrix-
vector multiplications and takes signs. This is sharply different
from most limited feedback schemes in the literature, where the
UE does the ‘heavy lifting’ [6], [10]. More importantly, under
our design, using a small number of feedback bits achieves very
satisfactory channel estimation accuracy even when the number
of BS antennas is very large, as long as the number of paths is
reasonably small – which is usually the case in practice [20];
thus, the proposed framework is ideal for massive MIMO 5G
cellular networks.

In addition to the above contributions, a new angle dictionary
construction methodology is proposed to enhance performance,
based on a companding quantization technique [32]. The idea
is to create dictionaries that concentrate the angle density in a
non-uniform manner, around the angles where directivity pat-
terns attain higher values. The baseline 3GPP antenna directiv-
ity pattern is considered for this, and the end-to-end results are
contrasted with those obtained using uniform quantization, to
showcase this important point. Judicious simulations reveal that
the proposed dictionaries outperform uniform dictionaries.

Last but not least, to further reduce computational complex-
ity at the BS and enhance beamforming and ergodic rate per-
formance, a new hybrid implementation is proposed (setup 3).
This setup is very effective when the UE is capable of carrying
out simple estimation algorithms, such as OMP. At the rela-
tively small cost of communicating extra support information
that slightly increases feedback communication overhead, the
BS applies the single-bit MLE and single-bit CS algorithms on
a dramatically reduced problem dimension. Simulations reveal
that the performance of the two algorithms under setup 3 is
always better than under setup 2. As in setup 2, the feedback
overhead is tightly controlled by the system designer and the
desired level of channel estimation accuracy is attained with
very small feedback rate, even in the massive MIMO regime.

Comprehensive simulations over a range of pragmatic sce-
narios, based on the 3GPP DD channel model [33], compare
the proposed methods with baseline least-squares (LS) scalar
and vector quantization (VQ) feedback strategies in terms of
normalized mean-squared estimation error (NRMSE), beam-
forming gain, and multi-user capacity under zero-forcing (ZF)
beamforming. Unlike VQ, which requires that the number of
feedback bits grows at least linearly with the number of BS an-
tennas to maintain a certain level of estimation performance, the
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number of feedback bits of the proposed algorithms is controlled
by the system designer, and substantial feedback overhead re-
duction is observed for achieving better performance compared
to VQ methods. It is also shown that when the sparse DD model
is valid, the proposed methods not only outperform LS schemes,
but they may also offer performance very close to perfect CSI
in some cases.

Relative to the conference precursor [34] of this work, this
journal version includes the following additional contributions:
the UE-based limited feedback scheme under setup 1; the novel
channel estimation algorithm based on the sparse MLE formu-
lation; the new hybrid schemes under setup 3; and comprehen-
sive (vs. illustrative) simulations of all schemes considered. The
rest of this paper is organized as follows. Section II presents
the adopted wireless system model, and Section III derives the
proposed non-uniform directional dictionaries. Sections IV, V,
and VI develop the proposed UE-based, BS-based, and hybrid
limited feedback algorithms, respectively. Section VII presents
simulation results, and Section VIII summarizes conclusions.

Notation: Boldface lowercase and uppercase letters denote
column vectors and matrices, respectively; ()∗, ()�, and ()H,
denote conjugate, transpose, and Hermitian operators, respec-
tively. ‖ · ‖p , �(·), �(·), and | · | denote the p-norm (with
p ∈ [0,∞]), the real, the imaginary, and the absolute or set car-
dinality operator, respectively. diag(x) is the diagonal matrix
formed by vector x, 0 is the all-zero vector and its size is under-
stood from the context, IN is the N × N identity matrix. Symbol
⊗ denotes the Kronecker product. E[·] is the expectation oper-
ator. CN (μ,Σ) denotes the proper complex Gaussian distribu-
tion with mean μ and covariance Σ. Matrix (vector) A:,S (xS )
comprises of the columns of matrix A (elements of x) indexed
by set S. Function sign(x) = 1 for x ≥ 0 and zero, otherwise;
abusing notation a bit, we also apply it to vectors, element-wise.
Function (x)+ = max(0, x), j �

√−1 is the imaginary unit,
and Q(x) = 1√

2π

∫∞
x e−t2 /2dt is the Q-function.

II. SYSTEM MODEL

We consider an FDD cellular system consisting of a BS serv-
ing K active UE terminals, where the downlink channel is es-
timated at the BS through feedback from each UE. For brevity
of exposition, we focus on a single UE. The proposed algo-
rithms can be easily generalized to multiple users, as the down-
link channel estimation process can be performed separately for
each UE. The BS is equipped with MT antennas and the UE is
equipped with MR antennas. The channel is assumed static over
a coherence block of Uc = BcTc(

T s−Tg
T s

) complex orthogonal
frequency division multiplexing (OFDM) symbols, where Bc is
the coherence bandwidth (in Hz), Tc is the coherence time (in
seconds), and quantity (T s−Tg

T s
) indicates the fraction of useful

symbol time (i.e., Ts is the OFDM symbol duration and Tg is the
cyclic prefix duration).1 In downlink transmission, the BS has

1In LTE, time-frequency resources are structured in a such a way, so the
coherence block occupies some resource blocks – each resource block consists
of 7 contiguous OFDM symbols in time multiplied by 12 contiguous subcarriers
in frequency. A subframe of duration 1 msec consists of two contiguous in time
resource blocks, yielding 2 · 84 = 168 symbols, over which the channel can be
considered constant [35].

to acquire CSI through feedback from the active UE terminals,
and then design the transmit signals accordingly. At the training
phase, the BS employs Ntr training symbols for channel esti-
mation. The narrowband (over time-frequency) discrete model
over a period of Ntr training symbols is given by

yn = Hsn + nn , n = 1, 2, . . . , Ntr , (1)

where n is the n-th training index, sn ∈ CMT is the trans-
mitted training signal, yn ∈ CMR is the received vector, H ∈
CMR ×MT denotes the complex baseband equivalent channel
matrix, and nn ∼ CN (0, σ2IMR ) is additive Gaussian noise at
the receiver of variance σ2 . All quantities in the right hand-side
of (1) are independent of each other; E[snsH

n ] = PT
MT

IMT , for
all n, where PT denotes the average total transmit power. The
signal-to-noise ratio (SNR) is defined as SNR � PT

σ 2 .
To estimate H, we can use linear least-squares (LS) [18], or,

if the channel covariance is known, the linear minimum mean-
squared error (LMMSE) approach [6]. These linear approaches
need more than MTMR training symbols to establish identifia-
bility of the channel (to ‘over-determine’ the problem) – which
is rather costly in massive MIMO scenarios.

A more practical approach to the problem of downlink chan-
nel acquisition at the BS of massive MIMO systems would be to
shift the computational burden to the BS, relying on relatively
lightweight computations at the UE, and assuming that only
low-rate feedback is available as well. The motivation for this
is clear: the BS is connected to the communication backbone,
plugged to the power grid, and may even have access to cloud
computing – thus is far more capable of performing intensive
computations. The challenge of course is how to control the
feedback overhead – without a limitation on feedback rate, the
UE can of course simply relay the signals that receives back to
the BS, but such an approach is clearly wasteful and impracti-
cal. The ultimate goal is to achieve accurate channel estimation
with low feedback overhead, i.e., estimate H using just a few
feedback bits.

Towards this end, our starting idea is to employ a finite scat-
terer (also known as discrete multipath, or double directional)
channel model comprising of L paths, which can be parameter-
ized using a virtual sparse representation. The inherent sparsity
of DD parameterization in the angle-delay domain can be ex-
ploited also at the the UE side to estimate the downlink chan-
nel using compressed sensing techniques with reduced pilot
sequence overhead [20]. This sparse representation will lead
to a feedback scheme that is rather parsimonious in terms of
both overhead and computational complexity. The narrowband
downlink channel matrix H can be written as

H =

√
MTMR

L

L∑

l=1

αl cT(φ′
l) cR(φl)aR(φl)aH

T(φ′
l) ejϕl ,

(2)
where αl is the complex gain of the l-th path incorporating
path-losses, small- and large-scale fading effects; variables φl

and φ′
l are the azimuth angle of arrival (AoA) and angle of de-

parture (AoD) for the lth path, respectively; and aT(·) ∈ CMT ,
aR(·) ∈ CMR represent the transmit and receive array steering
vectors, respectively, which depend on the antenna array ge-
ometry. Random phase ϕl is associated with the delay of the
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l-th path. Functions cT(·) and cR(·) represent the BS and UE
antenna element directivity pattern, respectively (all transmit an-
tenna elements are assumed to have the same directivity pattern,
and the same holds for the receive antenna elements). Examples
of transmit and receive antenna patterns are the uniform direc-
tivity pattern over a sector [φl

T , φu
T ], given by cT(φ) = 1, when

φ ∈ [φl
T , φu

T ] and cT(φ) = 0, otherwise, and likewise for cR(φ).
Another baseline directivity pattern is advocated by 3GPP [36]

cT(φ) = 10
Gd B
2 0 +max

{

−0.6
(

φ
φ 3 d B

)2
,− Am

2 0

}

, (3)

with φ ∈ [−π, π), where GdB is the maximum directional gain
of the radiation element in dBi, Am is the front-to-back ratio in
dB, and φ3dB is the 3 dB-beamwidth. A common antenna array
architecture is the uniform linear array (ULA) (w.r.t. y axis)
using only the azimuth angle; in this case the BS steering vector
(similarly for UE) is given by

aT(φ) =
√

1
MT

[
1 e−j 2 π d y

λ sin(φ) · · · e−j 2 π d y (M T −1 )
λ sin(φ)

]�
,

(4)
where λ is the carrier wavelength, and dy is the distance between
the antenna elements along the y axis (usually dy = λ/2).

The channel in (2) can be written more compactly as

H = ARdiag(α)AH
T , (5)

with matrices AR � [cR(φ1)aR(φ1) . . . cR(φL )aR(φL )] and
AT � [cT(φ′

1)aT(φ′
1) . . . cT(φ′

L )aT(φ′
L )] denoting all trans-

mit and receive steering vectors in compact form, respectively,

while vector α �
√

MT MR
L [α1ejϕ1 · · · αLejϕL ]� collects the

path-loss and phase shift coefficients. Starting from the model
in (5), one can come up with a sparse representation of the chan-
nel [20]. First, the angle space of AoA and AoD is quantized
by discretizing the angular space. Let us denote these dictionar-
ies PT and PR for AoDs and AoAs, respectively. Dictionary
PT contains GT dictionary members, while PR contains GR
dictionary members. One simple way of constructing these dic-
tionaries is to use a uniform grid of phases in an angular sec-
tor [a, b) ⊆ [−π, π). In that case, PR = {a + j (b−a)

GR +1 }GR
j=1 and

PT = {a + j (b−a)
GT +1 }GT

j=1 . For given dictionaries PR and PT , dic-
tionary matrices are defined

ÃR � {cR(φ)aR(φ) : φ ∈ PR} ∈ CMR ×GR , (6)

ÃT � {cT(φ)aT(φ) : φ ∈ PT} ∈ CMT ×GT , (7)

which stand for an overcomplete quantized approximation of the
matrices AR and AT , respectively. Hence, the channel matrix in
the left-hand side of (5) can be written, up to some quantization
errors, as

H ≈ ÃRGÃH
T , (8)

where matrix G ∈ CGR ×GT is an interaction matrix, whose
(j, k)th element is associated with the jth and kth columns in
ÃR and ÃT , respectively – if [G]j,k �= 0, this means that a
propagation path associated with the kth angle in PT and the
jth angle in PR is active. In practice, the number of active paths
is typically very small compared to the number of elements of

Fig. 1. System model: UE receives y, employs one of the three limited feed-
back setups to compress the downlink channel matrix H, feeds back the bits to
the BS through a limited feedback channel, and the BS reconstructs H.

G (i.e., GTGR ). Thus, the matrix G is in most cases very sparse
[20].

Stacking all columns {yn}N t r
n=1 in (1) in a parallel fash-

ion, we form matrix Y = [y1 y2 · · · yN t r ]. Denoting S =
[s1 s2 · · · sN t r ] for the transmitted training symbol sequence
and N = [n1 n2 · · · nN t r ] for the noise, and using the channel
matrix approximation in (8), the baseband signal in (1) can be
written in a compact matrix form as

Y = ÃRGÃH
TS + N. (9)

Applying the vectorization property vec(ABC) = (C� ⊗
A)vec(B) in Eq. (9), the baseband received signal is given
by

y =
(
(S�Ã∗

T) ⊗ ÃR

)
g + n = Qg + n, (10)

where y � vec(Y) ∈ CMR N t r , g � vec(G) ∈ CGT GR , n �
vec(N)∈CMR N t r , and Q�(S�Ã∗

T) ⊗ ÃR ∈ CMR N t r×GT GR .
We define G � GTGR the joint (product) dictionary size.
This quantity plays a pivotal role on the performance of the
algorithms considered, since it determines the angle granularity
of the dictionaries, which in turn determines the ultimate
estimation error performance. Fig. 1 provides a high-level
overview of the system model.

III. ANGLE DICTIONARY CONSTRUCTION ACCOUNTING FOR

ANTENNA DIRECTIVITY PATTERNS

Before introducing the proposed feedback schemes, let us
consider the practical issue of quantizing the angular space. Prior
art on channel estimation employs the sparse representation
in (5) using uniformly discretized angles as dictionaries [20].
However, a more appealing angle dictionary should take into
consideration the antenna directivity patterns, since the channel
itself naturally reflects the directivity pattern. In this work we
propose the following: pack more angles around the peaks of
the antenna directivity pattern, because the dominant paths will
likely fall in those regions, and this is where we need higher
angular resolution. Denser discretization within high-antenna-
power regions can reduce quantization errors more effectively
compared to a uniform quantization that ignores the directivity
pattern.
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Fig. 2. 3GPP directivity pattern along with function q applied on the proposed
dictionary using a = −π and b = π . The proposed angle dictionaries pack more
points around higher values of q.

To explain our approach, let q : [a, b) −→ R+ be a given
antenna directivity pattern function, which is assumed contin-
uous over φ ∈ [a, b) and suppose that we want to represent it
using N quantization points; see Fig. 2 for the 3GPP directiv-
ity pattern. We define the cumulative function of q, given by
G(φ) �

∫ φ

a q(x)dx. As the range space of function q takes pos-
itive values, its continuity implies that G is monotone increasing.
Thus, the following set

Cq �
{

G(a) +
n(G(b) − G(a))

N + 1
,

}N

n=1
, (11)

partitions the range of G in N + 1 intervals of equal size. By
the definition of G, the set in (11) partitions function q in N + 1
equal area intervals. Having the elements of set Cq, we can find
the phases at which q(φ) is partitioned in N + 1 equal area
intervals – which means that we achieve our goal of putting
denser grids in the angular region where the q function has
higher intensity. These phases can be found as

Fq �
{
G−1(y)

}
y∈Cq

, (12)

where G−1 : [G(a),G(b)) −→ [a, b) is the inverse (with respect
to composition) function of G. Observe that G−1 is a continuous,
monotone increasing function since G is itself continuous and
monotone increasing. The discrete set Fq is a subset of [a, b)
and concentrates more elements at points where function q has
larger values.

Let us exemplify the procedure of constructing the angle
dictionaries using the 3GPP antenna directivity pattern. As

the most general case [36], we assume a ≤ −φ3dB

√
Am
12 and

b ≥ φ3dB

√
Am
12 . The domain of q can be partitioned into 3 dis-

joint intervals as [a, b) = [a,−φ0) ∪ [−φ0 , φ0) ∪ [φ0 , b), with

φ0 � φ3dB

√
Am
12 . Using q(x) ≡ cT(x) in Eq. (3), applying the

definition of cumulative function G(φ) =
∫ φ

a q(x)dx, and using

its continuity, we obtain [34]

G(φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ − a)10
Gd B
2 0 − Am

2 0 , φ ∈ [a,−φ0),

G (−φ0) + 10
Gd B
2 0

√
π φ2

3 d B
ln(10) 2.4 ·

(

erf
(√

ln(10) 0.6 Am

12

)

+

sign(φ)erf
(√

ln(10) 0.6
φ2

3 d B
|φ|
))

, φ ∈ [−φ0 , φ0),

G (φ0) + (φ − φ0) 10
Gd B
2 0 − Am

2 0 , φ ∈ [φ0 , b),
(13)

where erf(x)
√

π
2 =

∫ x

0 e−t2
dt was utilized. Upon defining y− �

G(−φ0), y0 � G(0), and y+ � G(φ0), the inverse of G(·) can
be calculated using Eq. (13) in closed form as

G−1(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y 10
Am
2 0 − Gd B

2 0 + a, y ∈ [0, y−),

−
erf−1

(
2
√

ln( 1 0 ) 0 . 6
φ 3 d B

√
π

(y0 −y )10− Gd B
2 0

)

√
ln( 1 0 ) 0 . 6
φ 3 d B

, y ∈ [y−, y0),

erf−1
(

2
√

ln( 1 0 ) 0 . 6
φ 3 d B

√
π

(y−y0 )10− Gd B
2 0

)

√
ln( 1 0 ) 0 . 6
φ 3 d B

, y ∈ [y0 , y
+),

φ0 + (y − y+)10
Am
2 0 − Gd B

2 0 , y ∈ [y+ ,G(b)),
(14)

where erf−1(·) is the inverse (with respect to composition) func-
tion of erf(·), and is well tabulated by several software packages,
such as Matlab. The definition of inverse function in (14) for in-
terval [a, b), such that [−φ0 , φ0) ⊆ [a, b) ⊆ [−π, π), is the most
general case. As one can see in Fig. 2, the point density of this
quantization of the angular space indeed reflects the selectivity
of the antenna directivity pattern, as desired.

IV. UE-BASED BASELINE LIMITED FEEDBACK SPARSE

CHANNEL ESTIMATION

This section presents a baseline limited feedback setup where
UE estimates the sparse channel and sends back the support
along with the coarsely quantized nonzero elements of the esti-
mated sparse channel g.

A. Channel Estimation and Support Identification at UE

The inherent sparsity of g in (10) suggests the following
formulation to recover it at UE

min
g∈CG :‖g‖0 ≤L

{
1
2
‖y − Qg‖2

2

}

. (15)

The optimization problem in (15) is a non-convex combinato-
rial problem. Prior art in compressed sensing (CS) optimization
literature has attempted to solve (15) using approximation al-
gorithms, such as orthogonal matching pursuit (OMP) [28], it-
erative hard thresholding (IHT) [37], and many others; see [29]
and references therein. OMP-based algorithms are preferable for
sparse channel estimation, due to their favorable performance-
complexity trade-off [29]. OMP admits simple and even real-
time implementation, and its run-time complexity can be fur-
ther reduced by caching the QR factorization of matrix Q [28].
For completeness, the pseudo code for OMP is provided in
Algorithm 1. For a detailed discussion regarding the
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Algorithm 1: Channel Estimation and Support
Identification at UE.

Input: Q,y, L
1: t = 0 : Initialize r = y, Sĝ = ∅
2: while ‖QHr‖∞ > ε and t < L do
3: t := t + 1
4: p = QHr
5: n	 = arg maxn=1,2,...G{|pn |}
6: Sĝ := Sĝ ∪ n	

7: ĝSC
ĝ

= 0 and ĝSĝ = Q†
:,Sĝ

y
8: r = y − Qĝ
9: end while

Output: ĝ, Sĝ

implementation details and performance guarantees of the OMP
algorithm the reader is referred to [38].

B. Scalar Quantization and Limited Feedback

After estimating the sparse vector ĝ associated with an es-
timate of interaction matrix Ĝ a simple feedback technique is
to send coarsely quantized non-zero elements of ĝ, along with
the corresponding indices. In this work we make use of Lloyd’s
scalar quantizer to quantize the non-zero elements of ĝ, and we
denote the scalar quantization operation SQ(ĝ). Upon receiv-
ing the bits associated with the non-zero indices and elements
of ĝ, i.e., Sĝ and SQ(ĝ), the BS reconstructs channel matrix
Ĥ via (8), provided it has perfect knowledge of SQ threshold
values. As the channel model in (10) has sparse structure com-
prising L non-zero elements, for suitably designed Q and a
sufficient number of training symbols, this approach tends to
yield a channel estimate comprising O(L) non-zero elements.

Using a Q-bit real scalar quantizer, each non-zero element
of complex vector ĝ can be represented using �log2G� + 2Q
bits, where the first term accounts for index coding, and the
second for coding the real and imaginary parts. Hence, the total
number of feedback bits to estimate the interaction matrix G
at the BS, scales with O(L(�log2G� + 2Q)). In the worst case,
OMP iterates L times, offering worst case feedback overhead
L(�log2G� + 2Q). Note that the number of feedback bits of
the proposed UE-based baseline limited feedback algorithm is
independent of MT .

V. BS-BASED LIMITED FEEDBACK SPARSE

CHANNEL ESTIMATION

In order to reduce the feedback overhead without irrevocably
sacrificing our ability to recover accurate CSI at the BS, we pro-
pose to apply a pseudo-random dimensionality-reducing linear
operator PH to y. The outcome is quantized with a very simple
sign quantizer, whose output is fed back to the BS through a
low-rate channel. More precisely, the BS receives

b� + j b� = sign(� (PHy
)
) + j sign

(� (PHy
))

, (16)

where P ∈ CMR N t r×N f b , with Nfb ≤ MRNtr .

To facilitate operating in the more convenient real domain,
consider the following definitions

C�
� �

[�(QHP)� �(QHP)�
]
, (17a)

C�
� �

[−�(QHP)� �(QHP)�
]
, (17b)

C � [C� C�] = [c1 c2 · · · c2N f b ] ∈ R2G×2N f b , (17c)

x� �
[�(g)� �(g)�

] ∈ R2G, (17d)

b� �
[
b�
� b�

�
]�

= [b1 b2 · · · b2N f b ] ∈ R2N f b , (17e)

z� �
[
z�� z��

]�
= [z1 z2 · · · z2N f b ] ∈ R2N f b , (17f)

with �(PHQg) = C�
�x, �(PHQg) = C�

�x, z� = �(PHn),
and z� = �(PHn). Using the above, along with (16), the re-
ceived feedback bits at the BS are given by

bi = sign
(
c�i x + zi

)
, i = 1, 2, . . . , 2Nfb . (18)

The objective at the BS is to estimate x, given b and C. If the
complex vector g has L non-zero elements, then the real vector
x has up to 2L non-zero elements. More precisely, vector x has
L active (real, imaginary) element pairs, i.e., it exhibits group-
sparsity of order L, where the groups are predefined pairs here.
In our experiments, we have noticed that the distinction hardly
makes a difference in practice. In the sequel, we therefore drop
group sparsity in favor of simple 2L sparsity.

It should be noted that the number of feedback bits Nfb is
controlled by the dimension of P, which is determined by the
designer to balance channel estimation accuracy versus the feed-
back rate. As ‖x‖0 ≤ 2L, from compressive sensing theory we
know that the number of measurements to recover x is lower
bounded by 4L [38]. In practice, depending on the examined
cellular setting, it is usually easy to have a rough idea of L [23].

A. Single-Bit Compressed Sensing Formulation

Single-bit compressed sensing (CS) has attracted significant
attention in the compressed sensing literature [39]–[42], where
the goal is to reconstruct a sparse signal from single-bit mea-
surements. Existing single-bit CS algorithms make the explicit
assumption that ‖x‖2 = 1 [39], or ‖x‖2 ≤ 1 [40], [42]. Thus,
the solution of single-bit CS problems is always a sparse vec-
tor on a unit hypersphere. In our context, we seek a sparse x
that yields maximal agreement between the observed and the
reconstructed signs. This suggests the following formulation

x̂ = arg min
x∈R2 G

{

−
2N f b∑

i=1

sign(c�i x) bi + ζ‖x‖0

}

, (19)

where ζ > 0 is a regularization parameter that controls the
sparsity of the optimal solution. Unfortunately the optimiza-
tion problem in (19) is non-convex and requires exponential
complexity to be solved to global optimality. In addition, no-
tice that the scaling of x cannot be determined from (19): if x
is an optimal solution, so is cx for any c > 0. Therefore, the
following convex surrogate of problem (19) is considered

x̂ = arg min
x∈R2 G :‖x‖2 ≤R2

{−x�Cb + ζ ‖x‖1
}

, (20)
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where R2 is an upper bound on the norm of x, which also
prevents meaningless scaling up of x when ζ is small. We found
that setting R2 to be on the same order of magnitude with

Pα =
√∑L

l=1 vl works very well, where vl = E[|αl |2 ]; note
that quantity Pα expresses the aggregated power of the wireless
channel gain coefficients in Eq. (2). The cost function in (20) is
known to be an effective surrogate of the one in (19), both in
theory and in practice. If the elements of C are drawn from a
Gaussian distribution, the formulation in (20) will recover 2L-
sparse x on the unit hypersphere (i.e., R2 = 1) with ε-accuracy
using O( 2L logG

ε4 ) measurements [42].
Interestingly, problem (20) admits closed-form solution,

given by [42]

x̂ =

⎧
⎨

⎩

0, ‖Cb‖∞ ≤ ζ,

R2 T(ζ ; C b)
‖T(ζ ; C b)‖2

, otherwise,
(21)

where for v > 0, T(v; ·) : R2G −→ R2G denotes the shrinkage-
thresholding operator, given by

[T(v;x)]i = (|xi | − v)+ sign(xi), i = 1, 2, . . . , 2G. (22)

The overall computational cost of computing (21) is O
(NfbG). A key advantage of the adopted CS method is that
it is a closed-form expression, and thus it is very easily imple-
mentable in real-time.

B. Sparse Maximum-Likelihood Formulation

Let P be a semi-unitary matrix, i.e., PHP = IN f b . Because
vector n is a circularly-symmetric complex Gaussian vector,
the statistics of the noise vector z are N (0, σ2

z I2N f b ), where
σ2

z = σ 2

2 . So, each bi = sign(c�i x + zi) is a Rademacher ran-
dom variable (RV) with parameter Pr(bi = 1) = 1 − Pr(bi =
−1) = Pr(c�i x + zi > 0) = Q(− c�

i x
σz

). In addition to that, due

to the fact that z’s covariance matrix is diagonal, all {bi}2N f b
i=1

are independent of each other.
In the proposed sparse maximum-likelihood (ML) formula-

tion, the sparse channel parameter vector is estimated by maxi-
mizing the regularized log-likelihood of the (sign) observations,
b, given x. Using the independence of {bi}2N f b

i=1 , the sparse ML
problem can be formulated as [43]

inf
x∈R2 G

{

−
2N f b∑

i=1

ln Q
(

−bi
c�i x
σz

)

+ ζ‖x‖1

}

, (23)

where ζ ≥ 0 is a tuning regularization parameter that con-
trols the sparsity of the solution. Let us denote f(x) �
−∑2N f b

i=1 ln Q(−bi
c�

i x
σz

) and h(x) � f(x) + ζ‖x‖1 . The above
is a convex optimization problem since the Q-function is log-
concave [44, p. 104]. According to the Weierstrass theorem,
the minimum in (23) always exists since the objective, h(·), is
a coercive function, meaning that for any sequence {x(t)}∞t=1 ,
such that ‖x(t)‖ −→ ∞, limt→∞ h(x(t)) = ∞ holds true [45,
p. 495]. A choice for ζ that guarantees that the all-zero vector
is not solution of (23) is ζ ≤ ‖∇f(0)‖∞ (the proof of this claim
relies on a simple application of optimality conditions using

subdifferential calculus [45]), where the gradient of f(·) is given
by [17]

∇f(x) = −
2N f b∑

i=1

bi e
− (c�

i
x)2

2 σ 2
z

√
2πσz Q

(
−bi

c�
i x
σz

)ci . (24)

It is worth noting that the minimizer of problem (23) can be
also viewed as the maximum a-posteriori probability (MAP)
estimate of x under the assumption that the elements of vec-
tor x are independent of each other and follow a Laplacian
distribution.

The Hessian of f(·) is given by [17]

∇2 f(x) = C diag(m(x))C�, (25)

where the elements of vector m(·) are given by

mi(x) =
e
− (c�

i
x)2

σ 2
z

2πσ2
z

[
Q
(
− bi c�

i x
σz

)]2 +
bi (c�i x) e

− (c�
i

x)2

2 σ 2
z

√
2πσ3

z Q
(
− bi c�

i x
σz

) ,

(26)
i = 1, 2, . . . , 2Nfb . Having calculated the Hessian, due to
Cauchy-Swartz inequality for matrix norms

‖∇2 f(x)‖2 ≤ ‖C‖2‖diag(m(x))‖2‖C�‖2

= ‖C‖2
2‖m(x)‖∞ � L(x), ∀x ∈ R2G. (27)

It is noted that for bounded ‖x‖1 , L(x) is also bounded.
An accelerated gradient method for the l1-regularized prob-

lem in (23) is utilized, where sequences {x(t)} and {u(t)} are
generated according to [46]

x(t+1) = T

(
ζ

L
(
u(t)
) ; u(t) − 1

L
(
u(t)
)∇f

(
u(t)
)
)

, (28a)

β(t+1) =
1 +
√

1 + 4
(
β(t)
)2

2
, (28b)

u(t+1) = x(t+1) +
β(t) − 1
β(t+1)

(
x(t+1) − x(t)

)
. (28c)

For bounded L(·), which holds in our case, the sequence
generated by updates in (28) converges to an ε-optimal solution
(a neighborhood of the optimal solution with diameter ε) using
at most O(1/

√
ε) iterations [46].

Algorithm 2 illustrates the proposed first-order l1-
regularization algorithm incorporating Nesterov’s extrapolation
method. In addition, an adaptive restart mechanism [31] is uti-
lized in order to further speed up the convergence rate. Exper-
imental evidence on our problems shows that it works remark-
ably well. At line (1), quantity ‖C‖2

2 is precomputed, requiring
O(N 2

fb G) arithmetic operations. The per iteration complexity
of the proposed algorithm is O(Nfb G) due to the evaluation
of ∇f(u(t)) and m(u(t)) at lines 4 and 5, respectively. In the
worst case, MLE-reg algorithm iterates Imax times offering to-
tal computational cost O((Imax + Nfb)Nfb G). Note that such
complexity is linear in G, and thus, affordable at a typical BS.
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Algorithm 2: Limited Feedback Sparse ML Channel
Estimation.

Input: C,b, ζ
1: Precompute ‖C‖2

2
2: t = 0 : Initialize β(0) = 1, u(0) = x(0) ∈ R2G

3: while Stopping criterion is not reached do
4: L(t) = ‖C‖2

2‖m(u(t))‖∞
5: x(t+1) = T

(
ζ

L( t ) ; u(t) − 1
L( t ) ∇f(u(t))

)

6: β(t+1) = 1+
√

1+4(β ( t ) )2

2

7: u(t+1) = x(t+1) + β ( t )−1
β ( t + 1 ) (x(t+1) − x(t))

8: if ∇f(u(t))�(x(t+1) − x(t)) > 0 then
9: β(t+1) = 1, u(t+1) = x(t+1)

10: end if
11: t := t + 1
12: end while
Output: x̂ = x(t)

To reconstruct an estimate of the downlink channel, the BS
obtains ĝ from x̂ as ĝ = x̂1:G + jx̂G+1:2G and forms an estimate
of the interaction matrix Ĝ using the inverse of the vectorization
operation, i.e., Ĝ = unvec(ĝ). With Ĝ available, the downlink
channel matrix can be estimated as Ĥ = ÃRĜÃH

T .

VI. HYBRID LIMITED FEEDBACK SPARSE CHANNEL

ESTIMATION WITH REDUCED COMPUTATIONAL COST

The last setup proposed in this work is a hybrid between the
setups presented in Sections IV and V. This third setup is better
suited to cases when the UE can afford to run simple channel es-
timation algorithms, such as OMP. The UE-based support iden-
tification algorithm presented in Algorithm 1 is combined with
the BS-based limited feedback schemes of Section V resulting
in an algorithm that can significantly reduce the computational
cost at the BS, and possibly even the overall feedback overhead
for a given accuracy.

The UE first estimates the support of the downlink channel
vector g, Sĝ , using Algorithm 1. Let ĝ be the L-sparse channel
estimate.2 As feedback, UE sends the indices associated with
non-zero elements of estimate ĝ (i.e., Sĝ ), using L log2(G) bits,
along with 2Nfb sign-quantized bits b associated with received
signal y. Upon receiving b and an estimate of the support of x,
the BS exploits the fact that the elements of vector x̂ are zero
in the complement of the support SC

x̂ = {1, 2, . . . , 2G}\Sx̂ , i.e.,
x̂SC

x̂
= 0, implying that

bi = sign

⎛

⎝
∑

j∈Sx̂

ci,j xj + zi

⎞

⎠ , i = 1, 2, . . . , 2Nfb , (29)

and applies either of the two limited feedback channel estimation
algorithms presented in Sections V-A and V-B, but this time
limited to the reduced support Sx̂ to obtain an estimate x̂Sx̂ .
The whole procedure is listed in Algorithm 3.

2It is noted that having the support of complex vector ĝ the support of x̂ can
be also inferred easily through Eq. (17d). Specifically, Sx̂ = Sĝ ∪ {G + Sĝ }.

Algorithm 3: Hybrid Limited Feedback Sparse Channel
Estimation.

1: UE applies Algorithm 1 to obtain support information
Sĝ .

2: UE sends set Sĝ and vector b using (18), requiring
L�log2G� + 2Nfb feedback bits.

3: Upon receiving Sx̂ and b, BS applies Algorithm 2 or
Eq. (21) to obtain an estimate x̂Sx̂.

At the BS, the computational complexity of the proposed hy-
brid limited feedback sparse estimation algorithms invoked in
Algorithm 3 is reduced by a factor L/G compared to the pure
BS-based counterparts of Section V. It is reasonable to assume
that L is of the same order as L; thus, using extra �L log2(G)�
feedback bits, the computational cost of BS reconstruction al-
gorithms executed over a reduced support depends only on Nfb
and L and becomes independent of the joint dictionary size G.
Numerical results show that not only the complexity diminishes,
but the estimation error can be further reduced compared to the
case of not sending the support information. This can in turn be
used to reduce Nfb , if so desired.

VII. NUMERICAL RESULTS

The double directional channel model in Eq. (2) is used
with uniform antenna directivity pattern at UE and uniform
or 3GPP antenna directivity pattern at the BS. BS and UE are
equipped with ULAs. A variety of performance metrics is exam-
ined such as normalized mean-squared error (NRMSE), beam-
forming gain, and multiuser sum-capacity. The uplink feedback
channel is considered error-free. The following algorithms are
compared:

� LS channel estimation at the UE, given by ĤLS = YS†,
and quantization of ĤLS ’s elements using scalar quantizer
of Q bits per real number. This feedback scheme requires
exactly 2QMTMR feedback bits. This scheme is abbrevi-
ated LS-SQ.

� For the case of MR = 1, we add in the comparisons a
VQ technique that applies (a) LS channel estimation at the
UE, followed by (b) VQ of (ĥLS)H, and (c) feedback of
the VQ index. The VQ strategy of [13] based on a 2Q -

PSK codebook WPSK � {ej2π
( q −1 )

2 Q }2Q

q=1 is adopted for its
good performance and low overhead (Q(MT − 1) bits for
channel feedback). This scheme is abbreviated LS-VQ.

� Combination of OMP in Algorithm 1 with VQ technique
in [14] using a rate 2/3 convolutional code. The algo-
rithm exploits support information by executing first the
OMP algorithm for support identification and then per-
forms vector quantization over the reduced support. The
number of states in the trellis diagram is 8, and param-
eter Q determines the number of quantization phases
in the optimization problem in [14, Eq. (12)], equal to
2Q . The specific configuration for the algorithm in [14]
uses L(�log2G� + 2) + 3 feedback bits for the support
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Fig. 3. Comparison of NRMSE as a function of SNR for BS-based limited
feedback schemes.

information and the vector-quantized values, and is abbre-
viated OMP-VQ.

� The proposed UE-based baseline limited feedback scheme
presented in Section IV, henceforth abbreviated OMP-SQ.

� Single-bit CS limited feedback, as given in Section V-A.
� Single-bit l1-regularized MLE limited feedback, as de-

scribed in Section V-B.
� Hybrid single-bit l1-regularized MLE and single-bit CS

limited feedback algorithms, presented in Section VI.
For scalar quantization, LS-SQ uses Lloyd’s algorithm for

non-uniform quantization and assumes perfect knowledge of
SQ thresholds at the BS.

A. NRMSE vs. SNR

First the impact of SNR on NRMSE performance for the BS-
based schemes and hybrid counterparts is examined. NRMSE

is defined as E[ ‖Ĥ−H‖F

‖H‖F
]. The angle dictionary sizes for all

algorithms were set to GT = 140 and GR = 16. The num-
ber of scatterers, L, follows discrete uniform distribution over
[5, 6, . . . , 9, 10]. We study two cases where the azimuth an-
gles φl and φ′

l (a) were drawn uniformly from uniform an-
gle dictionaries PR and PT , both defined over [−π/2, π/2);
and (b) were random variables uniformly distributed over
[−π/2, π/2), i.e., φl, φ

′
l ∼ U [−π/2, π/2). The remaining pa-

rameters were set as MR = 2, MT = 128, Ntr = 64, Nfb =
NtrMR = 128, PT = 1 Watt. Rician fading was considered,

i.e., αl ∼ CN (
√

κl

κl +1 , 1
κl +1 ), with κl ∼ U [0, 40) and path de-

lay ϕl ∼ U [0, 2π]. The dimensionality reducing matrix P for
all algorithms was a random selection of Nfb columns of the
NtrMR × Nfb DFT matrix. Hybrid schemes use L = 15.

Fig. 3 shows the impact of quantization error for AoA and
AoD. It can be seen that if the angles are drawn from the dictio-
naries there is no error due to angle quantization and the NRMSE
of all studied algorithms becomes quite smaller (brown and ma-
genda dotted curves) than the case where the angles are drawn
uniformly in [−π/2, π/2) (green and blue solid curves). The
observation is that the impact of quantization error is severe for

Fig. 4. The proposed methods use fewer feedback bits yet outperform the LS
baseline for all values of SNR.

BS-based algorithms and their hybrid counterparts, so to com-
pensate for this, larger dictionary sizes GT and GR will be uti-
lized. In what follows, we always draw φl, φ

′
l ∼ U [−π/2, π/2),

so there is always dictionary mismatch.
Fig. 4 compares LS-SQ, OMP-VQ, OMP-SQ, hybrid MLE

l1-regularized, and hybrid CS algorithms. To alleviate quanti-
zation errors, the proposed dictionary-based algorithms utilize
GT = GR = 240. Moreover we use L = 15 for the proposed
limited feedback algorithms. For fair comparison, we set pa-
rameters so that the number of feedback bits is of the same
order of magnitude for all algorithms considered. Note that for
OMP-VQ the feedback overhead is not a function of Q and thus
it cannot be increased. Hybrid l1-regularized MLE and hybrid
CS are executed with Nfb = 100 and Nfb = 120, correspond-
ing to 440 and 496 feedback bits, respectively. We set Q = 3
(corresponding to 1548 feedback bits) for LS-SQ, Q = 5 (cor-
responding to 390 feedback bits) for OMP-SQ, while OMP-VQ
employs 273 feedback bits with 2Q phase states.

Fig. 4 shows the NRMSE performance as a function of SNR.
For SNR less than −5 dB the hybrid limited feedback schemes
achieve the best NRMSE performance. In the very low SNR
regime the hybrid CS algorithm offers the smallest NRMSE.
For SNR greater than 6 dB, OMP-SQ with Q = 5 outperforms
the other algorithms. The poor performance of LS-SQ stems
from the fact that the soft estimate ĤLS before quantization
is itself poor, as it does not exploit sparsity. OMP-VQ offers
the worst performance across all algorithms in the high SNR
regime. That happens because the VQ technique in [14] em-
ploys a predefined structured codebook at the BS, designed for
Rayleigh fading. Although the proposed algorithms use fewer
feedback bits than LS-SQ, they achieve much better perfor-
mance due to their judicious design. For a moderate number
of BS antennas, hybrid limited feedback algorithms are more
suitable at low-SNR, while OMP-SQ is better at high-SNR.

B. NRMSE vs. L

Using the same parameters as in the previous paragraph, Fig. 5
studies the impact of the maximum number of OMP iterations,
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Fig. 5. NRMSE versus L for the algorithms of setup 1 and 3. It can be seen
that the NRMSE is not necessarily a decreasing function of L.

L, on NRMSE performance of OMP-SQ and hybrid limited
feedback algorithms under different values of SNR. It can be
seen that in the low SNR regime the smaller L is, the smaller
NRMSE can be achieved by all schemes. Namely, the smallest
NRMSE is achieved for L = 5 for all algorithms. On the other
hand, in the high SNR regime the NRMSE versus L curve
has a convex shape with minimum around L ∈ [10, 20] for all
algorithms. This indicates that L should be chosen ≥ L, but not
much higher than L.

C. NRMSE vs. G and MT

Next the impact of joint dictionary size, G, and the number
of transmit antennas on NRMSE is studied for the proposed
algorithms in Sections IV and VI. For this simulation, MR = 1,
Ntr = 80, and SNR = 10 dB. Hybrid schemes utilize Nfb = 80,
the number of paths, the maximum number of OMP itera-
tions, and the dimensionality reducing matrix are the same as in
Section VII-A. OMP-SQ uses Q = 5 bits per real number, and
thus hybrid schemes and OMP-SQ utilize 160 + 15log2G and
150 + 15log2G feedback bits, respectively, in the worst case.

Fig. 6 studies the impact of MT and G on NRMSE. Recall
that G is determined from GT and GR . Three different scenarios
are considered for G, using GT = GR = 7, GT = GR = 31,
and GT = GR = 127. From Fig. 6 it is observed that for fixed
G increasing the number of transmit antennas yields higher
NRMSE, while for fixed number of transmit antennas, using
higher G yields reduced NRMSE, as expected. Note that for
MT ≥ 200 OMP-SQ has the worst NRMSE performance, while
for smaller MT it achieves better NRMSE compared to hybrid
schemes. For small MT , increasing G significantly reduces the
NRSME. For large MT , increasing G has little impact on the
NRMSE.

D. Beamforming Gain vs. SNR

Using the same parameters as in Section VII-A (Fig. 4)
with MT = 128, MR = 1, and PT = 1 Watt, in Fig. 7 we
study the beamforming gain performance metric, defined as

Fig. 6. NRMSE as a function of the number of BS antennas for different joint
dictionary sizes G. Higher G improves NRMSE.

Fig. 7. Beamforming gain as a function of SNR for 5 different algorithms.
The proposed methods outperform LS schemes for all values of SNR.

E
[

PT

‖ĥ‖2
2

∣
∣hH ĥ

∣
∣2
]
, as a function of SNR. This metric measures

the similarity between the actual channel h and the normalized
channel estimate ĥ and is proportional to average received SNR.
We also include the performance of perfect CSI to assess an up-
per bound on beamforming gain performance for the studied al-
gorithms. Hybrid schemes of setup 3, OMP-VQ (Q = 5), OMP-
SQ (Q = 5), LS-SQ (Q = 4), and LS-VQ (Q = 5) use 400, 273,
390, 1024, and 635 feedback bits overhead, respectively. Inter-
estingly, for SNR ≥ 20 dB OMP-SQ with Q = 5 achieves the
performance of perfect CSI. The proposed hybrid schemes have
very similar but slightly worse performance relative to OMP-
SQ. In addition, the performance gap between perfect CSI and
the proposed algorithms is less than 1.5 dB for SNR ≥ 10 dB.
The proposed algorithms outperform LS schemes for all values
of SNR. OMP-VQ performs very poorly compared to OMP-SQ
and other hybrid schemes. OMP-SQ offers the best performance,
but note that it assumes perfect knowledge of the SQ thresholds
at the BS, which in reality depend on the unknown channel.
Perhaps surprisingly, LS-VQ offers smaller beamforming gain
than LS-SQ. One reason is that LS-SQ assumes perfect knowl-
edge of the scalar quantization thresholds at the BS; another is
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Fig. 8. Beamforming gain as a function of MT in the massive MIMO regime.
The proposed algorithms outperform LS-SQ and LS-VQ for all values of MT .

that the vector-quantized codewords are confined to be PSK-
codewords that lie on the MT -dimensional unit complex circle,
so magnitude variation among the elements of ĥH

LS cannot be
exploited. We also note that the majority of VQ algorithms in the
limited feedback literature, including LS-VQ, are designed for
non-light-of-sight channels, a.k.a. Rayleigh fading, and the DD
model used here is far from Rayleigh – so LS-VQ and OMP-VQ
are not well-suited for the task.

E. Beamforming Gain vs. MT

A more realistic channel scenario is considered next, based
on the 3GPP multipath channel model [33], where path-loss and
shadowing are also incorporated in the path gains αl . We assume
a system operating at carrier frequency Fcar = 2 GHz, and thus
λ ≈ 0.15. Transmit power and noise power are set 0.5 Watts
and 10−10 Watts, respectively. The number of paths is a dis-
crete uniform RV in [5, 6, . . . , 19, 20]. For each path l: φl, φ

′
l ∼

U [−π/2, π/2), path distance dl ∼ U [80, 120], common path-
loss exponent η ∼ N (2.8, 0.12), inverse path-loss ρl =
( λ

4π )2( 1
dl

)η , shadowing 10log10(vl) ∼ N (10log10(ρl), 42),
and Rician parameter κl ∼ U [0, 50]. Thus, the final multipath

gain is given by αl ∼ CN (
√

κl

κl +1 vl ,
1

κl +1 vl), with path delay

ϕl ∼ U [0, 2π]. The average received SNR, incorporating path-
losses, small- and large- scale fading effects, changes per realiza-
tion, so an implicit averaging with respect to the received SNR
is applied. The beamforming gain of all algorithms compared in
Section VII is examined as a function of the number of transmit
antennas. For this scenario we consider: MR = 1 received an-
tenna, Ntr = 64 training symbols, L = 25 for OMP and hybrid
schemes, Nfb = Ntr = 64 for all BS-based limited feedback al-
gorithms and their hybrid counterparts, and Nfb columns of the
DFT matrix were chosen for the dimensionality reducing matrix
P. The dictionary sizes were set to GT = GR = 180.

Fig. 8 examines a massive MIMO scenario where MT be-
comes very large. We observe that in this scenario the beam-
forming gain takes values of order 10−8 . This is not surprising
since on top of small-scale fading this scenario further incorpo-
rates path-loss and shadowing effects.

Fig. 9. Beamforming gain vs MT using 3GPP antenna directivity pattern at
the BS. The directivity pattern-aware dictionary outperforms uniform dictionary.

From Fig. 8 we note that hybrid l1-regularized MLE achieves
the best beamforming gain for almost all MT , while hybrid CS
has very similar performance. OMP-SQ and OMP-VQ are the
only algorithms whose performance decreases as the number of
transmit antennas increases. It should be noted that OMP-VQ
(Q = 5), OMP-SQ (with Q = 3), classic BS-based, and hybrid
limited feedback schemes utilize only 428, 524, 128, and 502,
feedback bits overhead, respectively. MLE l1-reg and CS have
worse performance than their hybrid counterparts. On the other
hand, LS-SQ (with Q = 2), and LS-VQ (with Q = 4), employ
4MT and 4(MT − 1) feedback bits overhead, that is linear in
MT . All proposed algorithms outperform LS schemes as they
exploit the inherent sparsity of the DD channel, while the OMP-
VQ algorithm offers very poor performance. It can be concluded
that in the massive MIMO regime with realistic channel parame-
ters, the BS-based limited feedback algorithms and their hybrid
counterparts perform better than the other alternatives.

Next Fig. 9 compares the proposed angle dictionary (labeled
‘new dict.’) and the uniform quantization dictionary (labeled
‘unif. dict.’) in the same massive MIMO scenario assuming that
each BS antenna directivity pattern is given by Eq. (3) using
φ3dB = 55o , Am = 30 dB, and GdB = 8 dBi [23]. All algorithms
are configured with the same parameters as in the previous para-
graph. From Fig. 9 is evident that for the same number of dic-
tionary elements, the proposed non-uniform directivity-based
dictionary offers considerably higher beamforming gain perfor-
mance compared to the uniform one. In contrast to LS schemes,
as the number of transmit antennas increases, the feedback over-
head for the proposed algorithms remains unaffected, rendering
them a promising option for massive MIMO systems.

F. Execution Time vs. MT

For the pragmatic simulation setting of Fig. 8, Fig. 10 mea-
sures the end-to-end execution time of all algorithms averaged
over 200 independent experiments. It can be seen that MLE-reg
algorithm of setup 2 requires approximately 4 seconds for all
values of MT , which is the highest execution time. OMP-VQ
algorithm requires approximately 1.3 seconds for all studied
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Fig. 10. Execution time as a function of MT in the massive MIMO regime.

values of MT . Hybrid schemes and OMP-SQ offer end-to-end
execution time of 0.5 seconds for all values of MT , while CS
scheme of setup 2 can reduce the execution time to the half,
requiring 0.25 seconds. As can be seen in Fig. 10 the execution
time of the above algorithms remains unaffected by the num-
ber of BS antennas. On the contrary, the execution time of the
baseline LS schemes increases with the number of BS anten-
nas. The execution time of LS schemes is the smallest among
all algorithms. When the number of BS antennas is moderate,
LS-SQ and LS-VQ require execution time in the order of 0.01
seconds, while in the massive MIMO regime their execution
time increases to 0.017 and 0.25 seconds respectively. The low
execution time of LS-SQ stems form the fact that it requires
a calculation of a pseudoinverse followed by the execution of
Lloyd’s algorithm using the build-in Matlab functions.

G. Multiuser Sum-Capacity vs. PT

In practice, cellular systems serve concurrently multiple UE
terminals at the same time, so a multiuser performance metric is
of significant interest. Towards this end, we consider the down-
link sum-capacity of a cellular network under zero-forcing ZF
beamforming as a function of PT , assuming MT = 256, K =
16 scheduled UEs, MR = 1, and Ntr = 80. Hybrid schemes
and OMP algorithms employ L, GT = 210 and GR = 180
elements. BS uses a data stream of dimension K, u ∈ CK .
After receiving the feedback from K UEs, BS estimates the
downlink channels for each user k, ĥH

k , forms the compound
downlink channel matrix T̂ = [ĥ1 ĥ2 · · · ĥK ]H. Under ZF pre-
coding with equal power allocation PT

K per user, precoding

matrix V is given by V = [v1 v2 · · · vK ] = t(T̂HT̂)−1T̂H,
where t2 = K

trace((T̂HT̂)−1 )
guarantees that precoding vector sat-

isfies the power constraint. BS transmits s = Vu. The corre-
sponding instantaneous signal-to-interference-plus-noise-ratio

(SINR) for user k is given by γk = PT |hH
k vk |2∑

k ′ �= k PT |hH
k vk ′ |2 +K σ 2 . The

achievable ergodic rate for user k is given by E[R(γk )] = (1 −
N t r
U c

)E[log2(1 + γk )]. The achievable ergodic sum-rate (sum-

capacity) for K scheduled UEs is expressed as
∑K

k=1 E[R(γk )].

Fig. 11. Downlink sum-capacity as a function of the BS transmit power.
The proposed limited feedback along with non-uniform directional dictionaries
schemes offer significant sum-capacity performance gains.

Fig. 11 depicts the downlink sum-capacity as a func-
tion of BS transmit power PT . The downlink channels for
each user are generated using the same parameters as in
Section VII-E with antenna directivity pattern parameters
φ3dB = 55o , Am = 30 dB, and GdB = 8 dBi. The coherence
block occupies 20 resource blocks, i.e., Uc = 1680 channel
uses. The following algorithms are compared: LS-SQ with
Q = 3, LS-VQ with Q = 5, OMP-VQ with Q = 5, OMP-SQ
with Q = 3, and hybrid schemes using the proposed dictionar-
ies (labeled ‘new dict.’) and uniform dictionaries (labeled ‘unif.
dict.’). The performance gains of the proposed non-uniform dic-
tionaries over conventional uniform ones are evident in Fig. 11,
especially for MLE-reg and OMP-SQ algorithms. For 1 Watt
transmission power, MLE-reg and OMP-SQ with proposed non-
uniform dictionaries offer 15 and 20 bit/sec/Hz higher capacity
than MLE-reg and OMP-SQ executed with uniform dictionar-
ies. The proposed methods in conjunction with non-uniform
dictionaries offer a substantial sum-capacity performance gain
compared to LS schemes. The performance of OMP-VQ is very
poor, at least 5 dB worse than proposed MLE-reg algorithm with
non-uniform dictionaries for all values of PT .

H. Complexity Analysis

In this section a detailed computational complexity analysis at
both UE and BS is presented for all studied algorithms. Table I
shows the computational cost of all studied algorithms along
with the required number of feedback bits.

For LS schemes, at the UE side the calculation of ĤLS
requires O(N 2

tr(MT + Ntr)) arithmetic operations. For LS-
SQ, at the UE side, for each element of ĤLS , O(ISQ 2Q )
computations are required for the SQ algorithm, where ISQ
is the maximum of iterations for algorithm to converge. Af-
ter receiving the associated indices and the elements of the
quantized channel, the BS reconstructs the channel with com-
plexity O(MT MR). For LS-VQ, at the UE side, the com-
putational cost is due to the calculation of ĤLS and the
computation of optimal MT -dimensional 2Q -PSK sequence,
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TABLE I
COMPLEXITY ANALYSIS AND NUMBER OF FEEDBACK BITS

which requires O(MT log(MT)) computations [13]. Since the
codebook is already stored at the BS the channel reconstruction
requires O(1) computations. The complexity of OMP algo-
rithm is dominated by lines 4, 7, and 8 in Algorithm 1, which
is L MR Ntr(L + G)). Hence, the complexity for OMP-SQ is
O(ISQ 2Q L + L MR Ntr(L + G)). At the BS, the reconstruc-
tion of the channel matrix for OMP-SQ exploits the sparsity of
channel vector ĝ, and thus using only the L non-zero elements of
sparse matrix Ĝ the channel reconstruction using (8) requires
only O(L MT MR) arithmetic operations. The complexity of
the algorithm in [14] at the UE side is due to the vector quan-
tization of the L non-zero elements of path coefficient vector
ĝ through Viterbi algorithm (25+QL operations) and the sup-
port identification of ĝ through OMP algorithm. Hence, OMP-
VQ algorithm requires total O(25+Q L + L MR Ntr(L + G))
arithmetic operations at the UE. At the BS side, OMP-VQ al-
gorithm reconstructs the non-zero elements of ĝ through the
Viterbi algorithm, requiring O(25+Q L) computations; whereas
the reconstruction of the actual channel, using (8), demands
O(L MT MR) arithmetic operations. BS-based limited feed-
back schemes require Nfb MR Ntr arithmetic operations at the
UE side due to the multiplication of PH with y. While hy-
brid schemes require an extra L MR Ntr(L + G)) computa-
tional cost at the UE side due to the execution of OMP al-
gorithm for support identification. At the BS side, as shown
in Sections V-A and V-B, CS and MLE-reg algorithms require
O(GNfb ) and O((Imax + Nfb)GNfb ) computations, respec-
tively, to obtain an estimate of vector x. In addition, an extra
O(GMT MR) computational cost is required to reconstruct the
actual channel through (8). Finally, hybrid schemes require at the
BS, O(L Nfb) for CS and O((Imax + Nfb )L Nfb) for MLE-reg
algorithms. Using the support information obtained from feed-
back, hybrid schemes require extra O(LMT MR) calculations
to evaluate (8) for channel reconstruction.

I. Take-Home Points From the Simulations

We close this section by summarizing the most important
take-home points from our numerical results.

The baseline quantization algorithms LS-SQ and LS-VQ re-
quire low execution time but their feedback overhead scales
linearly with the number of BS antennas. As they don’t exploit
the DD parameterization, LS-SQ and LS-VQ yield worse es-
timation accuracy compared to the proposed limited feedback

algorithms of setups 1, 2, and 3, even though LS-SQ/VQ use a
higher number of feedback bits. OMP-VQ requires relative exe-
cution time and feedback overhead, depending linearly on L and
logarithmically on G; it performs very poorly in all our simu-
lation scenarios. The principal reason for the poor performance
for OMP-VQ is that its codewords are pre-defined and fixed,
offering limited channel estimation granularity. The proposed
algorithms of setup 2 require 2Nfb ≤ 2NtrMR feedback bits,
independent of the number of BS antennas. The execution time
of one-bit MLE-reg is high, whereas the execution time of one-
bit CS is at least an order of magnitude lower; on the other hand,
the estimation performance of one-bit CS is worse compared to
one-bit MLE-reg. Both algorithms of setup 2 have slightly worse
estimation performance than OMP-SQ for moderate number of
BS antennas in the high SNR regime. Conversely, in the low
SNR regime or when the number of BS antennas increases,
one-bit CS and one-bit MLE-reg outperform OMP-SQ. More-
over, the algorithms of setup 2 perform slightly worse compared
to their hybrid counterparts of setup 3. Such performance gains
of hybrid schemes come at the cost of an extra L�log2G� bits
in feedback overhead.

We found that employing joint dictionary size G =
O(MTMR) suffices to obtain good channel estimation accuracy
for the dictionary-based algorithms, corroborating the findings
of dictionary-based estimation prior art [20], [21], [24]. Con-
sequently, the feedback overhead for massive MIMO systems
employing the proposed OMP-SQ and hybrid schemes, scales
as O(L (log(MTMR) + 2Q)) and O(L log(MTMR) + 2Nfb ),
respectively. This logarithmic scaling with the number of BS
antennas underscores the practicality of the proposed limited
feedback algorithms for the DD model in massive MIMO
scenarios.

VIII. CONCLUSION AND FUTURE WORK

This work provided a new limited feedback framework us-
ing dictionary-based sparse channel estimation algorithms that
entail low computational complexity, and thus can be imple-
mented in real-time. The proposed dictionary accounts for the
antenna directivity pattern and can offer beamforming and ca-
pacity gains while requiring less feedback overhead compared
to uniform dictionaries. Unlike VQ-based schemes for which
the number of feedback bits must grows linearly with the num-
ber of BS antennas to maintain a certain performance level, the
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number of feedback bits for the proposed algorithms is under
designer control, and they can achieve better performance using
a substantially lower bit budget. The proposed baseline OMP-
SQ algorithm (setup 1) achieves the best performance when
the number of transmit antennas is moderate and SNR is high,
while in the low-SNR regime the BS-based (setup 2) and hybrid
(setup 3) schemes offer better performance. The hybrid schemes
(setup 3) achieve the best performance in the massive MIMO
regime.
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