
PARALLEL ALGORITHMS FOR LARGE SCALE CONSTRAINED TENSOR
DECOMPOSITION

Athanasios P. Liavas ∗

Department of ECE
Technical University of Crete
liavas@telecom.tuc.gr

Nicholas D. Sidiropoulos †

Department of ECE
University of Minnesota
nikos@ece.umn.edu

ABSTRACT

Most tensor decomposition algorithms were developed for in-
memory computation on a single machine. There are a few recent
exceptions that were designed for parallel and distributed com-
putation, but these cannot easily incorporate practically important
constraints, such as nonnegativity. A new constrained tensor fac-
torization framework is proposed in this paper, building upon the
Alternating Direction method of Multipliers (ADMoM). It is shown
that this simplifies computations, bypassing the need to solve con-
strained optimization problems in each iteration, yielding algorithms
that are naturally amenable to parallel implementation. The method-
ology is exemplified using nonnegativity as a baseline constraint,
but the proposed framework can incorporate many other types of
constraints. Numerical experiments are encouraging, indicating that
ADMoM-based nonnegative tensor factorization (NTF) has high
potential as an alternative to state-of-the-art approaches.

Index Terms— Tensors, constrained optimization, parallel al-
gorithms, nonnegative factorization, CANDECOMP, PARAFAC.

1. INTRODUCTION

Tensor decomposition has proven useful in a wide range of applica-
tions in signal processing and machine learning; see, for example,
[1, 2, 3, 4, 5, 6, 7]. There exist two basic tensor factorization models:
parallel factor analysis (PARAFAC) [8, 9] also known as canon-
ical decomposition (CANDECOMP) [10], or CP (and CPD) for
CANDECOMP-PARAFAC (Decomposition), or canonical polyadic
decomposition (CPD, again); and the Tucker3 model. With few
recent exceptions, all tensor factorization algorithms were originally
developed for centralized, in-memory computation on a single ma-
chine. This model of computation is inadequate for emerging big
data-enabled applications where the tensors to be analyzed cannot
be loaded on a single machine, the data is more likely to reside in
cloud storage, and cloud computing, or some other kind of high
performance parallel architecture, must be used for the actual com-
putation.

A carefully optimized Hadoop/MapReduce [11, 12] implemen-
tation of the basic ALS CP-decomposition algorithm was developed
in [13], which reported 100-fold scaling improvements relative to the
prior art. However, [13] is not designed for high performance com-
puting architectures, and it does not incorporate constraints on the

∗Supported in part by the EU and Greek national funds through the Op-
erational Program “Education and Lifelong Learning” of the National Strate-
gic Reference Framework (NSRF) - Research Funding Program: THALIS-
UOA-SWINCOM.

†Supported in part by NSF IIS-1247632.

factor matrices. A random sampling approach has been proposed
in [5], which creates and analyzes multiple randomly sub-sampled
parts of the tensor, then combines the results using a common piece
of data to anchor the constituent decompositions. The downside of
[5] is that it only works for sparse tensors, and it offers no identifia-
bility guarantees - although it usually works well for sparse tensors.
A different approach based on generalized random sampling was re-
cently proposed in [14, 15]. The idea is to create multiple randomly
compressed mixtures (instead of sub-sampled parts) of the original
tensor, analyze them all in parallel, and then combine the results.
The main advantages of [14, 15] over [5] are that identifiability can
be guaranteed, no sparsity is needed, and there are theoretical scal-
ability guarantees. Distributed CP decomposition based on the ALS
algorithm has been considered in [16, 17], which exploit the inherent
parallelism in the matrix version of the linear least squares subprob-
lems to split the computation in different ways, assuming an essen-
tially ‘flat’ architecture for the computing nodes.

In this work, we develop efficient algorithms for constrained
tensor factorization based on the Alternating Direction method of
Multipliers (ADMoM). We focus on non-negative CP decomposi-
tion (sometimes referred to as non-negative tensor factorization) as
a working problem, due to the importance of the CP model and non-
negativity constraints; but our approach can be readily generalized
to many other types of constraints on the latent factors, as well as
other tensor factorizations, such as Tucker3 (for a more detailed pre-
sentation of this work, see [18]).

The advantages of our approach are as follows. First, during
each ADMoM iteration, we avoid the solution of constrained opti-
mization problems, resulting in considerably smaller computational
complexity per iteration compared to constrained least squares based
algorithms, such as alternating non-negative least squares (NALS).
Second, our approach leads naturally to distributed algorithms suit-
able for parallel implementation. Finally, it can easily incorporate
many other types of constraints on the latent factors, such as spar-
sity. Numerical experiments are encouraging, indicating that the
ADMoM-based NTF has high potential as an alternative to state-
of-the-art approaches.

Notation: Vectors, matrices, and tensors are denoted by small,
capital, and underlined capital bold letters, respectively; for exam-
ple, x, X, and X. RI×J×K

+ denotes the set of (I × J × K) real
nonnegative tensors, while RI×J

+ denotes the set of (I × J) real
nonnegative matrices. ∥ · ∥F denotes the Frobenius norm of the ten-
sor or matrix argument and (A)+ denotes the projection of matrix A
onto the set of element-wise nonnegative matrices. The outer prod-
uct of vectors a ∈ RI×1, b ∈ RJ×1, and c ∈ RK×1 is the rank-one
tensor a ◦ b ◦ c ∈ RI×J×K with elements (a ◦ b ◦ c)(i, j, k) =
a(i)b(j)c(k). A ⊙ B denotes the Khatri-Rao product. Finally,



for matrices A and B with equal dimensions, we define A ∗ B :=∑
i,j Ai,jBi,j .

2. NONNEGATIVE TENSOR FACTORIZATION

Let tensor Xo ∈ RI×J×K
+ admit a nonnegative1 CP decomposition

of order F , Xo = [Ao,Bo,Co] =
∑F

f=1 a
o
f ◦bo

f ◦cof , where Ao =

[ao
1 · · · ao

F ] ∈ RI×F
+ , Bo = [bo

1 · · · bo
F ] ∈ RJ×F

+ , and Co =

[co1 · · · coF ] ∈ RK×F
+ . We observe the noise corrupted version of

Xo, X = Xo+E. In order to estimate Ao, Bo, and Co, we compute
matrices A ∈ RI×F

+ , B ∈ RJ×F
+ , and C ∈ RK×F

+ that solve the
optimization problem

min
A,B,C

fX(A,B,C) = 1
2
∥X− [A,B,C]∥2F

subject to A ≥ O,B ≥ O,C ≥ O,
(1)

where O is the zero matrix of appropriate dimensions, and the in-
equalities are element-wise. Let Y = [A,B,C] and, for every ten-
sor W, let W(1), W(2), and W(3) denote the matrix unfoldings of
W, with respect to the first, second, and third mode, respectively.
Then,

Y(1) = A (C⊙B)T , Y(2) = B (C⊙A)T ,Y(3) = C (B⊙A)T ,

and

fX(A,B,C) =
1

2

∥∥∥X(1) −A (C⊙B)T
∥∥∥2

F

=
1

2

∥∥∥X(2) −B (C⊙A)T
∥∥∥2

F

=
1

2

∥∥∥X(3) −C (B⊙A)T
∥∥∥2

F
.

(2)

These expressions are the basis for alternating least squares (ALS)-
type CP optimization. Nonnegative alternating least squares (NALS)
is a popular approach for the solution of (1), but nonnegativity
brings a significant computational burden relative to plain ALS, and
it also complicates the development of parallel algorithms for NTF.
The above expressions are also useful in the development of the
ADMoM-based NTF algorithm.

3. ADMOM

ADMoM is a technique for the solution of optimization problems of
the form [19]

min
x,z

f(x) + g(z) subject to Ax+Bz = c, (3)

where x ∈ Rn1 , z ∈ Rn2 , A ∈ Rm×n1 , B ∈ Rm×n2 , c ∈ Rm,
f : Rn1 → R, and g : Rn2 → R.

The augmented Lagrangian for problem (3) is

Lρ(x, z,y) = f(x) + g(z) + yT (Ax+Bz− c)

+
ρ

2
∥Ax+Bz− c∥22,

(4)

where ρ > 0 is a penalty parameter. Assuming that at time instant
k we have computed zk and yk, which comprise the state of the
algorithm, the (k + 1)-st iteration of ADMoM is

xk+1 = argmin
x

(
f(x) + ykTAx+

ρ

2
∥Ax+Bzk − c∥22

)
1Note that due to the nonnegativity constraints on the latent factors, F

can be higher than the rank of Xo.

zk+1 = argmin
z

(
g(z) + ykTBz+

ρ

2
∥Axk+1 +Bz− c∥22

)
yk+1 = yk + ρ (Axk+1 +Bzk+1 − c).

4. ADMOM FOR NTF

In order to develop an ADMoM-based NTF algorithm we must put
the NTF problem (1) into ADMoM form. Towards this end, we
introduce auxiliary variables Ã ∈ RI×F , B̃ ∈ RJ×F , and C̃ ∈
RK×F and consider the equivalent problem

min
A,Ã,B,B̃,C,C̃

fX(A,B,C) + g(Ã) + g(B̃) + g(C̃)

subject to A− Ã = O, B− B̃ = O, C− C̃ = O,
(5)

where, for any matrix argument M,

g(M) =

{
0, if M ≥ O,
∞, otherwise.

(6)

We introduce dual variables YA ∈ RI×F , YB ∈ RJ×F , and YC ∈
RK×F , and the vector of penalty terms ρ := [ρA ρB ρC]T . The
augmented Lagrangian is given in (7), at the top of the next page.

The ADMoM for this problem is given in (4) in the next page
(cf. the journal version, also available as an arxiv preprint [18], for
the derivation). We observe that, during each ADMoM iteration, we
avoid the solution of constrained optimization problems. This seems
favorable, especially in the cases where the size of the problem is
(very) large.

5. DISTRIBUTED ADMOM FOR LARGE NTF

In this section, we assume that all dimensions of tensor X are
large and derive an ADMoM-based NTF that is suitable for par-
allel implementation.2 We first partition A, B, and C as A =[
AT

1 · · · AT
NA

]T
, B =

[
BT

1 · · · BT
NB

]
, C =

[
CT

1 · · · CT
NC

]
,

where AnA ∈ RInA
×F , for nA = 1, . . . , NA,

∑NA
nA=1 InA = I ,

BnB ∈ RJnB
×F , for nB = 1, . . . , NB ,

∑NB
nB=1 JnB = J , and

CnC ∈ RKnC
×F , for nC = 1, . . . , NC ,

∑NC
nC=1 KnC = K. Let

Y = [A,B,C]. It turns out that, in order to derive the distributed
ADMoM for very large NTFs, we must derive partitionings of the
matrix unfoldings, Y(1), Y(2), and Y(3), in terms of (the blocks of)
matrices A, B, and C. We start by partitioning Y(1) as

Y(1) =


Y

(1)
1,1 · · · Y

(1)
1,NC

...
. . .

...
Y

(1)
NA,1 · · · Y

(1)
NA,NC

 ,

where Y
(1)
nA,nC ∈ RInA

×(KnC
J), for nA = 1, . . . , NA and nC =

1, . . . , NC . It is easy to show that Y(1)
nA,nC = AnA(CnC ⊙ B)T

[18]. Similarly, Y(2) can be partitioned into blocks Y
(2)
nB ,nC =

BnB (CnC ⊙ A)T , of dimensions JnB × (IKnC ), for nB =

1, . . . , NB and nC = 1, . . . , NC , and Y(3) can be partitioned into
blocks Y

(3)
nC ,nB = CnC (BnB ⊙ A)T , of dimensions KnC ×

(IJnB ), for nC = 1, . . . , NC and nB = 1, . . . , NB . If we partition

2Of course, the cases where only one or two of the dimensions of X are
large can be handled similarly.



Lρ(A,B,C, Ã, B̃, C̃,YA,YB,YC) = fX(A,B,C) + g(Ã) + g(B̃) + g(C̃) +YA ∗ (A− Ã) +
ρA
2

∥A− Ã∥2F

+YB ∗ (B− B̃) +
ρB
2

∥B− B̃∥2F +YC ∗ (C− C̃) +
ρC
2

∥C− C̃∥2F .
(7)

Ak+1 =
(
X(1) (Ck ⊙Bk) + ρAÃk −Yk

A

)(
(Ck ⊙Bk)T (Ck ⊙Bk) + ρAIF

)−1

Bk+1 =
(
X(2) (Ck ⊙Ak+1) + ρBB̃

k −Yk
B

)(
(Ck ⊙Ak+1)T (Ck ⊙Ak+1) + ρBIF

)−1

Ck+1 =
(
X(3) (Bk+1 ⊙Ak+1) + ρCC̃k −Yk

C

)(
(Bk+1 ⊙Ak+1)T (Bk+1 ⊙Ak+1) + ρCIF

)−1

Ãk+1 =

(
Ak+1 +

1

ρA
Yk

A

)
+

, B̃k+1 =

(
Bk+1 +

1

ρB
Yk

B

)
+

, C̃k+1 =

(
Ck+1 +

1

ρC
Yk

C

)
+

Yk+1
A = Yk

A + ρA
(
Ak+1 − Ãk+1

)
, Yk+1

B = Yk
B + ρB

(
Bk+1 − B̃k+1

)
, Yk+1

C = Yk
C + ρC

(
Ck+1 − C̃k+1

)
.

(8)

X(1), X(2), and X(3) accordingly, then fX can be written as

fX(A,B,C) =

NA∑
nA=1

NC∑
nC=1

1

2
∥X(1)

nA,nC
−AnA(CnC ⊙B)T ∥2F

=

NB∑
nB=1

NC∑
nC=1

1

2
∥X(2)

nB ,nC
−BnB (CnC ⊙A)T ∥2F

=

NC∑
nC=1

NB∑
nB=1

1

2
∥X(3)

nC ,nB
−CnC (BnB ⊙A)T ∥2F .

These expressions are fundamental for the development of the dis-
tributed ADMoM for NTF.

5.1. Distributed ADMoM for large NTF

In order to put the very large NTF problem into a form suit-
able for the ADMoM, we introduce auxuliary variables Ã =
[ÃT

1 · · · ÃT
NA

]T , with ÃnA ∈ RInA
×F , for nA = 1, . . . , NA,

B̃ = [B̃T
1 · · · B̃T

NB
]T , with B̃nB ∈ RJnB

×F , for nB = 1, . . . , NB ,
C̃ = [C̃T

1 · · · C̃T
NC

]T , with C̃nC ∈ RKnC
×F , for nC =

1, . . . , NC , and consider the equivalent problem

min
A,Ã,B,B̃,C,C̃

fX(A,B,C) +
∑NA

nA=1 g(ÃnA)

+
∑NB

nB=1 g(B̃nB ) +
∑NC

nC=1 g(C̃nC )

subject to AnA − ÃnA = O, nA = 1, . . . , NA,

BnB − B̃nB = O, nB = 1, . . . , NB ,

CnC − C̃nC = O, nC = 1, . . . , NC .
(10)

We introduce dual variables YA = [YT
A1

· · · YT
ANA

]T , YAnA
∈

RInA
×F , nA = 1, . . . , NA, YB = [YT

B1
· · · YT

BNB
]T , YBnB

∈
RJnB

×F , nB = 1, . . . , NB , YC = [YT
C1

· · · YT
CNA

]T , YCnC
∈

RKnC
×F , nC = 1, . . . , NC . The ADMoM for this problem is given

in (9) (a proof is given in the corresponding journal submission [18]).
We observe that, during each ADMoM iteration, we avoid the

solution of constrained optimization problems. Furthermore, and,
perhaps, more importantly, having computed all algorithm quantities
at iteration k, the updates of Ak

nA
, for nA = 1, . . . , NA, are inde-

pendent and can be implemented in parallel. After the computation

of Ak+1, the updates of Bk
nB

, for nB = 1, . . . , NB , are also inde-
pendent and can be implemented in parallel as well. Finally, after
the computation of Bk+1, we can compute in parallel the updates of
Ck

nC
, for nC = 1, . . . , NC . A description of a mesh-type architec-

ture for the implementation of the distributed ADMoM is provided
in [18].

We note that we can solve problem (10) using the ‘centralized’
ADMoM of Section 4. The difference is that, using the distributed
ADMoM developed in this section, we uncover the inherent paral-
lelism in the updates of the blocks of Ak, Bk, and Ck. If we initial-
ize the corresponding quantities of the two algorithms with the same
values, then both algorithms evolve in exactly the same way, see [18]
for a proof. Thus, the study (convergence analysis and/or numerical
behavior) of one of them is sufficient for the characterization of both.

6. NUMERICAL EXPERIMENTS

In our numerical experiments, we compare ADMoM NTF with (1)
NALS NTF, as implemented in the parafac routine of the N-way
toolbox for Matlab [20] and (2) NTF using the nonlinear least-
squares solvers (NLS), as implemented in the sdf nls routine of
tensorlab [21] (with the non-negativity option turned on in both
cases). In all cases, we use random initialization.

In extensive numerical experiments, we have observed that the
relative performance of the algorithms depends on the size and rank
of the tensor as well as the additive noise power. Thus, we consider
12 different scenarios, corresponding to the combinations of the fol-
lowing cases (1) one, two, or three tensor dimensions are large, (2)
rank F is small or large, and (3) additive noise is ‘weak’ or ‘strong’.
For each scenario, we generate R = 50 realizations of tensor X as
follows. We generate random matrices Ao, Bo, and Co with i.i.d.
U [0, 1] elements (using the rand command of Matlab) and construct
X = [Ao,Bo,Co] + N, where N consists of i.i.d. N (0, σ2

N ) el-
ements. For each realization, we solve the NTF problem with (1)
NALS (parafac), (2) NLS (sdf nls), and (3) ADMoM.

We designed our experiments so that, upon convergence, all
algorithms achieve practically the same relative factorization er-
ror. Towards this end, we set the values of the stopping parame-
ters as follows: the parameter Options(1) of parafac is set to
Options(1) = 10−5, the parameter TolFun of sdf nls is set to
TolFun = 10−8, and the ADMoM stopping parameters are set to



Ak+1
nA

=

 NC∑
nC=1

X(1)
nA,nC

(Ck
nC

⊙Bk)

+ ρAÃk
nA

−Yk
AnA

 NC∑
nC=1

(Ck
nC

⊙Bk)T (Ck
nC

⊙Bk)

+ ρAIF

−1

Bk+1
nB

=

 NC∑
nC=1

X(2)
nB ,nC

(Ck
nC

⊙Ak+1)

+ ρBB̃
k
nB

−Yk
BnB

 NC∑
nC=1

(Ck
nC

⊙Ak+1)T (Ck
nC

⊙Ak+1)

+ ρBIF

−1

Ck+1
nC

=

 NB∑
nB=1

X(3)
nC ,nB

(Bk+1
nB

⊙Ak+1)

+ ρCC̃k
nC

−Yk
CnC

)

 NB∑
nB=1

(Bk+1
nB

⊙Ak+1)T (Bk+1
nB

⊙Ak+1)

+ ρCIF

−1

Ãk+1
nA

=

(
Ak+1

nA
+

1

ρA
Yk

AnA

)
+

, B̃k+1
nB

=

(
Bk+1

nB
+

1

ρA
Yk

BnB

)
+

, C̃k+1
nC

=

(
Ck+1

nC
+

1

ρA
Yk

CnC

)
+

Yk+1
AnA

= Yk
AnA

+ ρA
(
Ak+1

nA
− Ãk+1

nA

)
, Yk+1

BNB
= Yk

BnB
+ ρB

(
Bk+1

nB
− B̃k+1

nB

)
, Yk+1

CnC
= Yk

CnC
+ ρC

(
Ck+1

nC
− C̃k+1

nC

)
(9)

Size F σ2
N mean(RFE)

NALS
mean(t)

NLS
mean(t)

ADMoM
mean(t)

NALS
std(t)

NLS
std(t)

ADMoM
std(t)

3000× 50× 50 3 10−2 0.2156 12.4010 17.2584 7.1806 1.4770 6.9348 3.8647
10−4 0.0221 16.6500 16.5962 7.5098 1.9625 3.3589 4.2499

30 10−2 0.0260 212.0598 115.7030 110.4128 11.4579 8.0409 91.4882
10−4 0.0026 270.6674 117.2152 148.5052 11.5324 11.3154 149.0542

400× 400× 50 3 10−2 0.2175 8.6174 4.7124 8.0710 0.9264 1.4596 4.4952
10−4 0.0222 11.0670 4.8916 8.3614 1.2075 1.6443 3.1833

30 10−2 0.0260 71.1950 31.7546 106.1362 8.2119 3.2162 76.5743
10−4 0.0026 92.4838 31.1690 94.5734 7.9280 3.7062 88.1671

200× 200× 200 5 10−2 0.1400 10.9142 4.1756 12.5190 1.2783 0.7915 2.1334
10−4 0.0143 14.2882 4.1070 12.6184 2.5817 0.9059 2.1616

30 10−2 0.0260 55.0806 16.1838 33.9268 4.4886 1.3649 12.2687
10−4 0.0026 70.0238 16.7624 32.1670 6.5737 1.4152 10.0182

Table 1. Mean relative factorization error and mean and standard deviation of cputime, in sec, for NALS, NLS and ADMoM NTF.

ϵabs = 10−4 and ϵrel = 10−4.
In practice, convergence properties of ADMoM NTF depend on

the (random) initialization point. In some cases, convergence may
be quite fast while, in others, it may be quite slow. As we shall
see in the sequel, this phenomenon seems more prominent in the
cases where rank F is ‘large.’ In order to overcome this problem,
we adopted the following strategy. We execute ADMoM NTF for
up to nmax = 400 iterations (we have observed that, in the great
majority of the cases in the scenarios we examined, this number of
iterations is sufficient for convergence when we start from a ‘good’
initial point). If ADMoM does not converge within nmax iterations,
then we restart it from another random initial point; we repeat this
procedure until ADMoM converges.

Since an accurate statement about the computational complexity
per iteration of parafac is not easy, the metric we used for compari-
son of the algorithms is the cputime of Matlab. Despite the fact that
cputime is strongly depended on computer hardware and the actual
algorithm implementation, we feel that it is a useful metric for the
assessment of the relative efficiency of the algorithms.3

In Table 1, we present the mean and standard deviation of
cputime, in seconds, denoted as mean(t) and std(t), respectively,
for NALS, NLS, and ADMoM. We also present the mean relative

3For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5
GHz Intel Core i7 Intel processor and 16 GB RAM.

factorization error (which is common to all algorithms), denoted as
mean(RFE). We observe that there is no clear winner. Certainly, for
high ranks, NLS has very good behavior. In general, both NALS and
NLS have more ‘predictable’ behavior than ADMoM. Especially
for high ranks, the cputime of our implementation of ADMoM has
very high variance. For small ranks, ADMoM looks more competi-
tive and, in the cases where one dimension is much larger than the
other two, it behaves very well.

7. CONCLUSION

Motivated by emerging big data applications, we developed a new
constrained tensor factorization framework based on ADMoM. We
used non-negative factorization of third order tensors as an exam-
ple to work out the main ideas, but our approach can be generalized
to higher order tensors, many other types of constraints on the la-
tent factors, as well as other tensor factorizations and tensor com-
pletion. Our numerical experiments were encouraging, indicating
that, in many cases, ADMoM-based NTF has high potential as an
alternative to the state-of-the-art and, in some cases, it may become
state-of-the-art. The fact that it is naturally amenable to parallel im-
plementation can only increase its potential. We are currently work-
ing towards further improvements of the core algorithm.



8. REFERENCES

[1] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor
analysis in sensor array processing,” IEEE Transactions on
Signal Processing, vol. 48, no. 8, pp. 2377–2388, 2000.

[2] N. Sidiropoulos, G. Giannakis, and R. Bro, “Blind PARAFAC
receivers for DS-CDMA systems,” IEEE Transactions on Sig-
nal Processing, vol. 48, no. 3, pp. 810–823, 2000.

[3] D. Nion, K. Mokios, N. Sidiropoulos, and A. Potamianos,
“Batch and adaptive PARAFAC-based blind separation of
convolutive speech mixtures,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 6, pp. 1193–
1207, 2010.

[4] C. Fevotte and A. Ozerov, “Notes on nonnegative tensor fac-
torization of the spectrogram for audio source separation: Sta-
tistical insights and towards self-clustering of the spatial cues,”
in Exploring Music Contents, ser. Lecture Notes in Computer
Science, S. Ystad, M. Aramaki, R. Kronland-Martinet, and
K. Jensen, Eds. Springer Berlin, 2011, vol. 6684, pp. 102–
115.

[5] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos,
“Parcube: Sparse parallelizable tensor decompositions.” in
ECML/PKDD (1), ser. Lecture Notes in Computer Science,
P. A. Flach, T. D. Bie, and N. Cristianini, Eds., vol. 7523.
Springer, 2012, pp. 521–536.

[6] R. Bro and N. Sidiropoulos, “Least squares regression un-
der unimodality and non-negativity constraints,” Journal of
Chemometrics, vol. 12, pp. 223–247, 1998.

[7] A. Cichocki, D. Mandic, C. Caiafa, A.-H. Phan, G. Zhou,
Q. Zhao, and L. De Lathauwer, “Multiway Component Anal-
ysis: Tensor Decompositions for Signal Processing Applica-
tions,” IEEE Signal Processing Magazine, 2014 (to appear).

[8] R. Harshman, “Foundations of the PARAFAC procedure:
Models and conditions for an “explanatory” multimodal fac-
tor analysis,” UCLA Working Papers in Phonetics, vol. 16, pp.
1–84, 1970.

[9] ——, “Determination and proof of minimum uniqueness con-
ditions for PARAFAC-1,” UCLA Working Papers in Phonetics,
vol. 22, pp. 111–117, 1972.

[10] J. Carroll and J. Chang, “Analysis of individual differences
in multidimensional scaling via an n-way generalization of
Eckart-Young decomposition,” Psychometrika, vol. 35, no. 3,
pp. 283–319, 1970.

[11] Apache, “Hadoop.” [Online]. Available:
http://hadoop.apache.org/

[12] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[13] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gi-
gatensor: scaling tensor analysis up by 100 times-algorithms
and discoveries,” in Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and data min-
ing. ACM, 2012, pp. 316–324.

[14] N. Sidiropoulos, E. Papalexakis, and C. Faloutsos, “A Paral-
lel Algorithm for Big Tensor Decomposition Using Randomly
Compressed Cubes (PARACOMP),” in Proc. IEEE ICASSP
2014, May 4-9, Florence, Italy.

[15] ——, “Parallel Randomly Compressed Cubes: A Scalable Dis-
tributed Architecture for Big Tensor Decomposition,” IEEE
Signal Processing Magazine, Sep. 2014.

[16] A. de Almeida and A. Kibangou, “Distributed computation of
tensor decompositions in collaborative networks,” in Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), 2013 IEEE 5th International Workshop on, Dec 2013,
pp. 232–235.

[17] ——, “Distributed large-scale tensor decomposition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, May 2014.

[18] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms
for constrained tensor decomposition via the alternating
direction method of multipliers,” IEEE Trans. on Signal
Processing, submitted Aug. 30, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2383

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends
Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011. [Online].
Available: http://dx.doi.org/10.1561/2200000016

[20] C. A. Andersson and R. Bro, “The n-
way toolbox for matlab.” [Online]. Available:
http://www.models.life.ku.dk/source/nwaytoolbox

[21] L. Sorber, M. Van Barel, and L. De Lathauwer, “Tensorlab
v2.0.” [Online]. Available: http://www.tensorlab.net/


