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Robustness of Least-Squares and
Subspace Methods for Blind Channel

Identification/Equalization with Respect to
Effective Channel Undermodeling/Overmodeling
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Abstract—The least-squares and the subspace methods are
two well-known approaches for blind channel identification/
equalization. When the order of the channel is known, the
algorithms are able to identify the channel, under the so-called
length and zero conditions. Furthermore, in the noiseless case,
the channel can be perfectly equalized. Less is known about the
performance of these algorithms in the practically inevitable
cases in which the channel possesses long tails of “small” impulse
response terms. We study the performance of themmmth-order
least-squares and subspace methods using a perturbation
analysis approach. We partition the true impulse response into
the mmmth-order significant part and the tails. We show that
the mmmth-order least-squares or subspace methods estimate an
impulse response that is “close” to themmmth-order significant
part. The closeness depends on the diversity of themmmth-order
significant part and the size of the tails. Furthermore, we show
that if we try to model not only the “large” terms but also some
“small” ones, then the quality of our estimate may degrade
dramatically; thus, we should avoid modeling “small” terms.
Finally, we present simulations using measured microwave radio
channels, highlighting potential advantages and shortcomings of
the least-squares and subspace methods.

Index Terms— Communications, equalization, multichannel
system identification.

I. INTRODUCTION

I NTERSYMBOL interference (ISI) is the distortion intro-
duced by practically all channels during signal transmission.

Adaptive channel equalization has been a successful technique
toward the elimination of ISI. Traditional implementations of
adaptive equalizers are based on the periodic transmission of
a known training sequence, which permits the identification
and/or equalization of the channel. However, there are impor-
tant applications, such as digital TV broadcasting, in which
the use of a training sequence is very costly. In these cases,
blind equalization techniques have proved viable alternatives.

It is well established that when the receiver’s matched filter
output is sampled at the symbol rate, the resulting sequence
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is stationary, and blind channel identification/equalization
techniques must use, implicitly or explicitly, higher (than
second) order statistics (HOS) in order to identify mixed
phase channels. On the other hand, if the matched filter is
sampled faster than the symbol rate (fractionally spaced case),
then the resulting sequence iscyclostationary, and second-
order statistics (SOS) are sufficient for blind identification
of most channels. Working with SOS-based instead of HOS-
based techniques is advantageous, especially in a time-varying
environment, because SOS can be estimated accurately with
far fewer data samples than their higher order counterparts.

The recent development of SOS-based blind identifica-
tion/equalization methods under a single-input/multi-output
(SIMO) channel setting [1], derived either from fractional
sampling (FS) of the receiver or from the use of an array
of sensors at the receiver, has been considered a major
breakthrough and has spawned intensive research in the area.
As a result, many novel schemes have been developed that can
claim exact channel identification/equalization, in the noiseless
case, under the so-calledzero forcingconditions. The most
well-known approaches are the least-squares (LS) [2], the
subspace (SS) [3], and the linear prediction (LP) [4] methods.

Furthermore, SIMO implementations of implicitly HOS-
based blind equalization techniques have resulted in very
interesting schemes, such as the FS constant modulus algo-
rithm (CMA), which avoid, in the noiseless case, drawbacks
related to their traditional single-input/single-output (SISO)
counterparts, such as potentially large equalizer length and
potential convergence to local minima [5].

While all the aforementioned methods claim exact channel
identification/equalization in the noiseless case, under the zero
forcing conditions, their behavior may change dramatically
under practically inevitable “less ideal” conditions such as

• the presence of non-negligible additive channel noise;
• the presence of long tails of “small” leading and/or

trailing impulse response terms.

The robustness of blind identification/equalization methods
to additive channel noise and long channel “tails” is a very
critical issue that is directly related to their applicability under
“real-world” conditions.

The efforts toward a deeper understanding of the robustness
properties of blind identification/equalization techniques, with
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respect to channel noise and/or channel “tails,” are in the early
stages [6]–[10] and admit the following shortcomings.

• It is not always clear to what extent the results apply in
practice, due to various approximations and/or simplifi-
cations during the development of the analysis.

• The approaches often involve complicated techniques,
lacking the engineering insight necessary for a lucid un-
derstanding of the various phenomena and for suggesting
improved solutions.

These shortcomings have impeded a clear understanding of
the behavior of blind identification/equalization methods under
realistic operating conditions.

In this paper, we consider the behavior of theth-order
LS and SS algorithms in the two-channel, noiseless, exact
statistics case. In Section II, we present the SIMO channel
setting, and we review the LS and SS blind channel identifica-
tion methods for the known channel order case. In Section III,
in order to study the behavior of the th-order LS and SS
methods, we decompose the true impulse response into the

th-order significant part and the tails; we show that the
th-order LS and SS methods estimate an impulse response

that is close to the th-order significant part; the closeness
depends on the diversity of the th-order significant part
and the size of the tails. Furthermore, we show that when
we try to model not only the “large” terms but also some
“small” ones, then the quality of our estimate may degrade
dramatically. Thus, we should avoid modeling “small” terms.
We then assess the performance of the st-order “zero
forcing” equalizers. In Section IV, we check our theoretical
results by simulations; furthermore, we present simulations
using measured microwave radio channels, and we highlight
potential advantages and shortcomings of the methods in
realistic cases.

II. LS AND SS METHODS FORBLIND

CHANNEL IDENTIFICATION/EQUALIZATION

A. Two-Channel Model

In this section, we describe the basic steps of the LS and
the SS methods for blind channel identification for the single-
input/two-output channel setting, which is presented in Fig. 1;
this setting can be obtained by channel oversampling by a
factor of 2, which is quite common in telecommunications,
or by using two sensors at the receiver. If the true channel
order is , the output of the th channel , for ,
is given by

where

convolution operator;
input sequence, which is assumed to be zero-mean
unit-variance i.i.d. sequence;
impulse response of theth channel;
additive white channel noise.

Fig. 1. Single-input/two-output channel setting.

We denote the impulse response of theth channel, ,

by and the entire channel parameter

vector by .

By stacking the most recent samples of each channel,
we construct the data vector

which can be expressed as

using input and noise vectors

The convolution matrix is defined as

...
...

In order to review the LS and the SS methods for the
identification of , we consider first the case .
We assume that the subchannels do not share common zeros,
guaranteeing their identifiability.

B. LS Methods

The SIMO channel structure implies that in the noiseless
case [2]

yielding

(1)

If we define
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where is the -dimensional identity matrix, then
(1) can be expressed, for all time indices, as

The LS estimate is given by

where

is the data autocorrelation matrix. As shown in [11], in this
case, the LS estimate is given by

where is the eigenvector associated with the smallest
eigenvalue of . In the noiseless or the temporally and spa-
tially white additive noise cases, the two-channel LS method
identifies the unknown channel, that is,

C. SS Methods

Subspace methods are based on the orthogonality of the
so-called noise and signal subspaces [3]. In the two-channel
case, the noise subspace is spanned by, whereas the signal
subspace is spanned by the columns of . Thus

where we have used the commutativity property of the con-
volution. The subspace estimate is computed as

As shown in [11], in the two-channel case the LS and SS
estimates coincide with probability 1.

D. Zero Forcing Equalization

Having identified the channel , we can equalize it
perfectly, in the noiseless case, by using the zero forcing
equalizers of order for delays as

(2)

where denotes the vector with 1 at the st position
and zeros elsewhere.

III. U NDERMODELING/OVERMODELING

A. The Framework

In the previous section, we reviewed ways for the identi-
fication/equalization of an unknown channel under the SIMO
framework, assuming that the channel order is given. We must
appreciate, nonetheless, that physical microwave radio channel
lengths are not unambiguously determined, due to possibly
long “heads” and “tails” of small impulse response terms [7].

In order to study the behavior of the th-order LS/SS
method, we partition the channel impulse response into the
following parts:

1) the th-order significant part, which is usually found
near the middle of the impulse response and contains
( ) “consecutive large” terms; if the channel pos-
sesses less than ( ) “large” terms, then the th-order
significant part contains some “small” terms as well;

2) the tails, which is the complementary part to theth-
order significant part; this part is usually composed of
“small” leading and/or trailing impulse response terms;
if the channel possesses more than ( ) “large” terms,
then the tails contain some “large” terms as well.

This partition can be expressed notationally, for

, as [10], [12]

(3)

where

(4)

with

(5)

(6)

With , we denote the corresponding nonzero-padded
vectors, i.e.,

(7)

In the sequel, we study theth-order LS and SS methods, and
we explore the relationship between the “identified”th-order
impulse response and the trueth-order channel .

Our principal concern is deducing the mean asymptotic
performance obtainable using theth-order LS and SS meth-
ods. All results, therefore, are expressed in terms of true
second-order statistics. An important practical issue, of course,
is to gauge the variances of different estimators versus the
data length and their influence on the equalization quality.
By definition of variance, however, such calculations require
knowledge of mean values of estimators. In order to keep
a manageable presentation, we shall not pursue a variance
analysis for the th-order case in this work. We believe,
however, that our results, particularly those related to problem
conditioning, will prove very useful in subsequent variance
analyzes. We remark finally that spatially and temporally white
channel noise does not bias the mean asymptotic solution
obtained using the LS and SS methods (although such noise
will, of course, increase estimation variance) and, hence,
will not alter expressions concerning mean asymptotic per-
formance. For simplicity, we thus remove channel noise from
our analysis.



LIAVAS et al.: ROBUSTNESS OF LEAST-SQUARES AND SUBSPACE METHODS 1639

B. th-Order LS/SS Blind Channel Identification

If the true channel order is and its impulse response
is , then the autocorrelation matrix of , which
is denoted by , provides sufficient information for the
identification of the via the sequence of computations

where denotes the minimum eigenvector of . If the true
channel impulse response is , then it is easy to show
that the autocorrelation matrix of remains because

meaning that, in this particular case in which the subchan-
nels possess common zeros at infinity, theth-order LS or
SS methods “identify” the nonzero part of , namely

. This result is directly related to the blind nature of
the algorithm, that is, the exploitation of solely channel output
statistics, and will prove very useful in the sequel.

Now, let us consider what happens when the true impulse
response is , with , under the assumption that

is “small,” i.e.,

with (8)

In this case

(9)

The autocorrelation matrix of is

where denotes the resulting perturbation. Theth-order
LS/SS blind channel identification method “identifies”
through the sequence of computations

where the variables with tildes denote perturbed quantities.
Here, the vector is the minimum eigenvector of .

At first, we address how close is to . For this purpose,
we may consider as a perturbation of and apply
eigenvector perturbation results. However, since and
are the minimum right singular vectors of and

, respectively, it is preferable to use singular vector
perturbation results instead. We thus consider as a
perturbation of , and we give an upper bound
for .

We recall that under the no common zero as-
sumption, rank , yielding

, with associated right singular
vector ; in this case, defines the null space of

. We denote by the smallest nonzero
singular value of , i.e.,

(10)

Since measures the distance in the matrix 2-norm of
from the matrices of rank [13, p. 73],

thus violating our assumption concerning its rank, it may be
interpreted as a measure ofdiversityof the channel .

Using (3), we identify the perturbation on as

which, using the matrix 2-norm/-norm inequality [13, p. 57],
the structure of , and (8), yields

(11)

In the sequel, we shall use the concept of the angle between
the unit 2-norm singular vectors and , which is defined
as [14, p. 15]

arc with

(12)

By definition, is a measure of the distance between
the subspaces spanned by and , and the cosine between

and is non-negative.
We can now proceed to the following theorem, which

provides an upper bound for .
Theorem 1: Assume that rank

. Denote by the minimum right singular vector of
, by the minimum nonzero singular value of
, and by the minimum right singular vector

of . If , then

(13)

Proof: Under the assumptions of the theorem, we obtain
[15, p. 267, ex. 2], [16]

(14)

Now, for the unit 2-norm vectors and , we obtain

which, using (14), gives

This verifies relation (13), to prove the theorem.
Corollary 1: Let be the th-order significant part

of the true channel and the estimate of the th-order
LS/SS method. If , then

(15)
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Proof: If , then Theorem 1 holds. Then,
since , , and is
orthogonal, (9) and (13) altogether give

to prove the corollary.
Recapitulating, we may say that in order to study the

performance of the th-order LS/SS methods, we partition
the impulse response into theth-order significant part and
the tails. Results (13) and (15) aregeneric; that is, they are
valid for every , as long as and . They
imply simply that if the diversity of the th-order significant
part of the channel is sufficiently large and, at the same
time, the size of the tails is sufficiently small, then the

th-order LS and SS methods compute an impulse response
that is close to the th-order significant part of the channel.

Two important questions that cannot be answered by (15)
are the following:

“Is it always possible to find an such that the th-
order LS/SS method provides a good channel approxi-
mation?”
“When this is possible, how can we find such an?”

To answer the first question, extensive experimentation with
measured microwave radio channels is required. The second
question is the topic of [20].

In the sequel, we show that we should favor, in general, the
“smallest possible” . More specifically, we show that when
we try to model not only the “large” impulse response terms
but also some “small” ones, then the quality of our estimate
may degrade dramatically.

Thus, let us imagine the hypothetical case in which we know
a priori that the “large” channel terms occupy theth-order
part of the impulse response between indices and ,
implying that fulfills (8), whereas we apply the th-
order LS/SS method, with ; hence, ,
with and/or .

In this case, the autocorrelation matrix of can be
expressed as

From (13) and (15), it becomes clear that the factor that
determines the accuracy of the estimation of is

(16)

that is, the minimum nonzero singular value of .

The next theorem gives a relationship between and ,

for , which provides significant insight into the

behavior of the algorithm, when and/or , for
are “small.”

Theorem 2: If denotes the minimum nonzero singular
value of , then

(17)

Proof: It is well known that is the distance in the
matrix 2-norm between the matrix

and the matrices with rank 2 . A very simple
way to decrease the rank of is to null its first
row by adding a perturbation matrix, with only two nonzero
elements at the appropriate positions of the first row, with
values and . Using the matrix 2-norm/F-norm
inequality, we obtain

An analogous statement holds for the case in which we null
the last row of . Since equals the minimum
2-norm of a perturbation matrix, which decreases the rank of

, (17) follows, which proves the theorem.
Now, let us consider the implications of Theorem 2 to our

study. We recall that

with

Thus, since and/or for belong to ,
Theorem 2 implies that

We recall that

and that the perturbation is .
Physical considerations imply that for

(18)

giving

(19)

To justify this, recall that now, is the correct order of the
actual significant part of the channel andnot a hypothesized
order; thus, the assumed tails are the actual channel tails;
measured microwave radio channels possess long tails of small
terms and decrease slowly [7]; this means that neighboring
“small” terms are of the same order of magnitude, validating
(18).

Hence, , which is the minimum right singular vector of
, is a typical example of anill-conditioned or

unstablesingular vector [13, p. 430] because theseparation
between its corresponding singular value, i.e., zero, and the
remaining singular values, i.e., , is , which, due to
(19), is of the order of the perturbation . The
fact that minimum right singular vectors and and
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channels and are related through the orthog-
onal transformation implies that our estimate is
unstable as well.

In practice, in the majority of the cases, the condition
of Theorem 1 is not satisfied, and the only

upper bound we can give for is 1. This means
that we do not have anya priori knowledge for the “distance”
between and and, consequently, for the distance
between and . This is analogous to what has
been considered aschannel overmodeling[17], [18]. The role
of the “zero impulse response terms” in these studies is played
by the “small” terms in our study. In a numerical analysis
parlance, we may say that efforts toward modeling “small”
impulse response terms lead generically to anill-conditioned
or unstableproblem and, thus, should be avoided.

From these considerations, we may define aseffective
channel that part of the channel containing all the “large”
terms; let us denote its order by . A case is calledun-
dermodeled(resp.,overmodeled) if the assumed channel order

is smaller (resp. larger) than . In both the undermodeled
and overmodeled cases, good effective channel approximation
seems difficult; in the former cases, the approximation may
be poor due to large undermodeling error, whereas in the
latter, it may be poor due to lack of diversity. Even assuming
that we know , good effective channel approximation is
not guaranteed; the quality of the approximation depends on

and . The fact that wecannotapproximate a channel
arbitrarily well by increasing the complexity of our model is
probably a significant obstacle toward general applicability of
these methods.

C. Zero Forcing Equalization

Having “identified” the th-order channel , we
can equalize it perfectly in the noiseless case, for delays

, by using the “zero forcing” equalizers
of order ( )

(20)

Of course, does not, in general, equalize perfectly
the true channel , even in the noiseless case, due to the
influence of the tails. Since

(21)

and, under the assumptions stated in the previous subsection,
, we expect that

and we denote the corresponding residual as

(22)

The next theorem provides an upper bound for this quantity.
Theorem 3: If denotes the residual of the “zero

forcing” equalizer of order ( ), , then for

(23)

Proof: The theorem can be proved as follows.

where we have used (21). From the definition of the convo-
lution matrix , we have

yielding

Finally, from (20), we obtain

to prove the theorem.
In the sequel, we modify slightly bound (23), and we

provide a bound for in terms of quantities related
to the true channel and not to the computed estimates. Using
the singular value perturbation bound [13, p. 428]

we deduce that if , then

If , then

(24)

Term may be interpreted as a measure
of diversity of , just like . These
terms are not orderable, that is, one is not always larger than
the other; extensive simulations have shown that they are very
close each other.

Thus, the diversity of the th-order significant part of the
channel and the size of the tails are the factors that determine
the performance of blind channel approximation/equalization.
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(a)

(b)

Fig. 2. (a) Estimation errork~h2; 4 � h2; 4k2 (solid line) and bound (15) (thick line). (b) Best-case residualkr1; ik2 (solid line) and bound (23) (thick
line) for varying the size of the tails.

IV. SIMULATIONS

In the previous section, we studied the behavior of the
th-order LS and SS methods, and we derived bounds (15)

and (23), which provide a measure of their performance.
The bounds are not tight, in general. However, they are
given by reasonably simple expressions, which identify the
cases in which the algorithms perform well or may perform
poorly. In this section, we validate our theoretical results using
simulations.

In the first simulation, we provide results concerning blind
channel identification/equalization for varying the size of the
tails. The significant part of each subchannel starts at

and has length 3, i.e., order 2; it is given by
. In

this case, ; this implies
that the significant part of the channel offers great diversity. In
order to study the influence of the tails on the estimation of the
significant part, relation (11) and Theorem 1 apply whenever
the 2-norm of the tails does not exceed , which gives

dB

We construct by extending the impulse response of
each subchannel by random tails, which are composed of 10
nonzero terms; we add two terms before and eight terms after
the significant part; using the tails, we construct , as in
(6). In order to get the desired ratio, we
adjust the size of and , Then, we apply the second-
order LS/SS method on , and we compute the estimation
error . In Fig. 2(a), we plot , as

(a)

(b)

Fig. 3. (a) Subchannel zeros ofh2; 4. (b) Subchannel zeros ofh12 with
20 log

10
(khz

2; 4k2=kd
z

2; 4k2) = 50.

well as bound (15). We observe that the bound provides a
good estimation of the “identification” error. In Fig. 2(b), we
plot the smallest residual, over the different delays, of the first-
order “zero forcing” equalizer, i.e., the equalizer that equalizes
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(a) (b)

(c) (d)

(e)

Fig. 4. (a), (b) Portion of the real part of subchannels. (c), (d) Subchannel outputs. (e) Best-case output of first-order zero forcing equalizer computed
by impulse response estimated by second-order SS method.

perfectly , in the noiseless case, and bound (23). We
observe that, at least for large , bound (23)
indicates that the channel can be equalized sufficiently well
by a first-order equalizer.

In Fig. 3(a), we plot the zeros of and , where

We observe that the subchannel zeros of are not close,
implying large diversity; we recall that the same fact is implied
by the relatively large value of . In Fig. 3(b), we plot most
of the subchannel zeros of , which is the one used in
Fig. 2, for (two zeros of
each subchannel are far away from the unit circle due to
the small leading terms). We observe that the subchannel
zeros of are very close, implying that offers very
small diversity; however, since, as we see in Fig. 2, the
corresponding residual is smaller than , it is clear that

can be equalized sufficiently well by the first-order LS/SS
“zero forcing” equalizer. The reason for this is that if the
size of the tails is sufficiently small, as it is in our case, the
performance of the first-order equalizer is determined by the
diversity of , which is sufficiently large, and the size of

, which is sufficiently small, and not by the diversity of
, which is very small.

In the final simulation, we process data obtained by us-
ing the oversampled (by a factor of 2) microwave radio
channelchan4.mat, which is found at http://spib.rice.edu/spib/
microwave.html. The channel possesses long tails of small
leading and trailing terms. In Fig. 4(a) and (b), we plot
a portion of the real part of the two subchannels; each
subchannel possesses 150 nonzero terms; the “small” terms
are about two orders of magnitude smaller than the significant
terms. In Fig. 4(c) and (d), we plot the output of each
subchannel, in the noiseless case, with input 100 samples of an
i.i.d. 4-QAM signal. In order to estimate the effective channel
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length, we compute the “overmodeled” , and we apply
the AIC and MDL criteria [19], which, unfortunately, lead to
overmodeling. We found very useful the criterion

rank (25)

This criterion provides astable decomposition of the range
space of the data autocorrelation matrix into signal and noise
subspaces; an extensive study of information theoretic criteria
for rank detection, as well as the development and study
of (25), can be found in [20]. Using (25), we estimate the
effective channel order as 2, i.e., three taps. This estimate is
not only intuitively satisfying, taking into account Fig. 4(a)
and (b), but it is also very useful since it will lead, as we shall
see shortly, to sufficiently good equalization ofchan4.mat.
We apply the second-order LS/SS to the outputs of the two
subchannels; then, we compute the corresponding first-order
zero forcing equalizers. The best-case output of the zero
forcing equalizers is plotted in Fig. 4(e). We see that we
can open the eye by simply using first-order zero forcing
equalizers.

Unfortunately, we did not manage to always reliably process
data obtained by some channels available at this site (for
example, chan3.mat). In addition, we found it difficult to
process reliably more complicated input constellations, such as
16-QAM; this results from the fact that wecannotapproximate
the various channels arbitrarily well.

In the cases in which we can open the eye, 100 data
samples seem to be enough; this is a clear advantage in rapidly
time-varying environments. However, only channels whose
significant part provides enough diversity and, at the same
time, whose unmodeled tails are sufficiently small can be
approximated and, subsequently, equalized sufficiently well;
this is a clear shortcoming of the methods.

A more detailed simulation study, including consideration
of the noisy case, can be found in [20].

V. CONCLUSIONS

In order to study the behavior of the th-order LS and
SS methods for blind channel identification, we partitioned
the true channel into the th-order significant part and the
tails. We showed that the th-order LS/SS method estimates
a channel that is close to theth-order significant part. The
closeness depends on the diversity of theth-order significant
part and the size of the “unmodeled” part . Furthermore,
we showed that if we try to model not only the “large” terms
but also some “small” ones, then the blind channel estimation
problem becomes generically ill-conditioned. Thus, we should
avoid modeling “small” terms.

Consequently, we defined as effective channel that part of
the channel containing all the “large” terms. If its order is,
then we called a case undermodeled (resp. overmodeled) if the
assumed channel order is smaller (resp. bigger) than .

The development and the study of an efficient procedure
for the determination of the effective channel order is the
topic of [20].

Concerning the equalization part, we considered the perfor-
mance of “zero forcing” equalizers; the diversity of
and the “identification error” determine their performance.

Finally, we performed simulations that were in general
agreement with our theoretical results; more specifically, they
showed that sufficiently good equalization of unknown chan-
nels, using “zero forcing” equalizers of order ( ), is
possible, if the diversity of the th-order significant part of
the true impulse response is sufficiently large and, at the same
time, the size of the unmodeled part is sufficiently small.
Results with a similar flavor concerning the LP method have
been derived in [21].

The fact that we cannot approximate a channel arbitrarily
well by increasing the complexity of our model is perhaps the
most significant obstacle against general applicability of the
LS and SS methods.
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